

SEARCHING FOR AXIONS USING THE COSMIC MICROWAVE BACKGROUND

DANIEL GRIN Haverford College

PHYSICS COLLOQUIUM VILLANOVA UNIVERSITY 2/10/2017

OUTLINE

- * The cosmic microwave background a high-energy physics laboratory
 * Beyond the standard model
 * Testing axion dark matter and dark energy using the CMB
- **∗**Future work

Collabs: R.Hložek, D.J. E. Marsh, P.Ferreira, J. Dunkley, E. Calabrese, R.Allison

STANDARD MODEL (SM) OF PARTICLE PHYSICS

Force carriers

THE COSMIC MICROWAVE BACKGROUND (CMB)

Large Hadron Collider

Cosmic microwave background

13 TeV

 10^{16} GeV $t \sim 10^{-36} \text{s} \rightarrow \sim 10^{-32} \text{ s}$

COSMIC MICROWAVE BACKGROUND (CMB): EXPERIMENTAL PROGRESS

THE EXPANDING UNIVERSE

Past

With expansion

$$z = rac{\lambda_{
m observed}}{\lambda_{
m emitted}} - 1$$

WHAT ARE WE LOOKING AT?

Image credit (Addison Wesley 2004) transparent opaque plasma gas Time Temperature

`RECOMBINATION': FIRST H ATOMS Z~1100, t~380,000 years

Sound waves!

* Photons, protons, electrons move together

SNAPSHOT AND GEOMETRY

FOURIER ANALYSIS OF PRIMORDIAL SOUND

*Power spectrum is sensitive to

*Expansion history after first atoms form
*Dynamics of sound waves at this epoch
*Properties of gravitational field
*Total matter density, radiation density, electron/ proton density

COSMIC ENERGY BUDGET

5% baryonic matter: protons, electrons, atoms *"stuff we know"

32% cold dark matter (CDM)

*Stable, neutral, non-relativistic particle*Weak interactions with standard model

63% dark energy <

THEORETICAL SHORTCOMINGS OF SM

DARK ENERGY?

 $\ddot{R}(t) > 0$ Cosmic acceleration requires very unusual substance

Cosmological Constant Λ $\rho_{\Lambda} \sim \text{ const}$

DARK ENERGY: SM VACUUM ENERGY?

Crudely:
$$\Delta E \sim \frac{\hbar}{\Delta t}$$

Full standard model vacuum energy predicts.... $\Omega_\Lambda \sim 10^{120} \quad {\rm vs} \ \Omega_\Lambda \simeq 0.63$ This is what you call a colossal failure

SUPERSYMMETRY THEORY

*Solves many of SM's problems!

Dark matter?

*Heavy! $m_{\text{dark matter}} \sim 10^2 \text{ GeV vs } m_{\text{proton}} \sim 1 \text{ GeV}$ *Correct dark-matter abundance! 32% of cosmic mean density Recurring theme:

Filling in the holes of the standard model can also furnish candidates for dark matter (or dark energy)!

DARK MATTER: TERRESTRIAL EXPERIMENT

So far, no dice!

Time to consider alternative dark matter & dark energy candidates!

Axions

The theory of the strong interaction has a problem

THE STRONG CP PROBLEM

*The theory of the strong interaction predicts an electric dipole moment for the neutron!

Violates charge-parity (CP) symmetry!

We (physicists) don't like small numbers that don't have a dynamical explanation!

AXIONS

*Maxwell's equations +New physics

 $abla \cdot \vec{E} = 4\pi \rho_e + \left(rac{\vec{\nabla} a(\vec{x}) \cdot \vec{B}(\vec{x})}{f_a} \right)$ Gauss's Law

(Peccei/Quinn 1977)

$$\vec{\nabla} \times \vec{B} - \partial_t \vec{E} = 4\pi \vec{J}_e - \frac{1}{f_a} \operatorname{Anderesis} \vec{v} \times \vec{v} \cdot \vec{x} + \vec{v} \cdot \vec{v$$

*A new fundamental field

$$\partial_t^2 a(\vec{x}) - \nabla^2 a(\vec{x}) = -\frac{1}{f_a} \vec{E} \cdot \vec{B} - m^2 a(\vec{x})$$

*Shields neutron dipole moment

WHAT ARE AXIONS?

a

New scalar field with global U(1) symmetry! Broken at scale f_a

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\rm a}} g^2 G\tilde{G}$$
$$\Lambda^2$$

$$m_a$$
 (

$$_{\rm mis}h^2 = 0.236 \left\langle \theta_i^2 f(\theta_i) \right\rangle \left(\frac{m_a}{6.2\mu {\rm eV}} \right)^{-7/6}$$

 f_a

Peccei + Quinn (1977), Weinberg +Wilczek (1978), Kim (1979), Zhitnitsky (1980), Dine et al. (1981), Sikivie (1982, 1983, 1985,1986, and many others!) Similar story to super-symmetry: Axions solve a problem with the standard model, and furnish dark matter/dark-energy candidates!

$$10^{12} \text{ GeV} < f_a < 10^{19} \text{ GeV}$$

VS

13 TeV at terrestrial coliders

What about *VERY* low mass axions?

COSMOLOGY OF ULTRA-LIGHT AXIONS: Dark matter and dark energy candidates

STRING THEORY

* One framework that solves SM problems is string theory Particles are vibrational excitations of an extended object (a 'string')

Figure by Matthew Herndon

* String theory may require *many* axions.

* Wide range of masses have correct dark matter/dark energy abundance Axiverse! Witten and Srvcek (2006), Arvanitaki+ 2009 Acharya et al. (2010), Cicoli (2012) 10^{-33} 10^{-18} m_a (in eV)

ULTRA-LIGHT AXIONS (ULAS) IN STRING THEORY

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

Hundreds of scalars with approx shift symmetry

Axiverse! Arvanitaki+ 2009 Vitten and Srvcek (2006), Acharya et al. (2018), CTIYO PRIORS

ULTRA-LIGHT AXIONS

* Interactions with standard model are very small!

 $g_{a\gamma\gamma} \propto m_a$

*Inaccessible to terrestrial experimentation

Ultra-light axions still gravitate!

AXIONS IMPRINT ON COSMOLOGY

AXIONCAMB

ULA of any mass is self-consistently followed from DE to DM regime

DATA + ANALYSIS

*Planck 2013 temperature anisotropy power spectra (+SPT+ACT) *Cosmic variance limited to $\ell \sim 1500$

*WiggleZ galaxy survey (linear scales only $k \leq 0.2h \text{ Mpc}^{-1}$)

*240,000 emission line galaxies at z<1

*3.9 m Anglo-Australian Telescope (AAT)

*Nested sampling, MCMC, vary $m_a, \Omega_a h^2, \Omega_c \overline{h^2}, \Omega_b h^2, \Omega_\Lambda, n_s, \overline{A_s, \tau_{reion}}$

Difficult parameter space

Degeneracies addressed using nested sampling MULTINEST (Hobson, Feroz, others 2008)

CONSTRAINTS

*Tight constraints over 7 orders of magnitude in mass:

Thanks to AXIONCAMB and Planck

*ULAs are viable DM/DE candidates in linear theory outside ``belly" 34

CONSTRAINTS

Dark-energy type axions

CONSTRAINTS

Dark-matter type axions

CONSTRAINTS

Dramatic changes to observables can result

CONSTRAINTS

Dark-matter type axions

LOOK FOR ULTRA-LIGHT AXIONS IN THE COSMOS

Axion deBroglie wavelength

Astronomical length scale kilo-lightyear – giga-lightyear!

Matter clustering for ULA (in dark matter regime)

*Galaxies trace the matter in the universe *Suppression grows $\propto -\frac{1}{\Omega_a + \Omega_c}$ nH

CMB-S4

*Next gen. CMB ground-based expt. concept

- $*\sim1$ arcmin beam
- *1 μ K arcmin noise level
- ***~500,000** detectors
- * Location, sky coverage TBD

From CMB-S4 Science book.... arXiv: 1610.02743

CMB LENSING

S4-cast for lensing and ULAs

Fisher forecast using OXFISH code—OOM improvement driven by lensing

INITIAL CONDITIONS — INFLATION Quantum fluctuations set initial conditions for CMB and all resulting infromogeneity (galaxies etc) $\Delta E \sim \frac{\hbar}{\Delta t}$ The Universe expanded exponentially in time $\Delta E \sim \frac{10^{-32}}{\Delta t}$ s

 $E \sim 10^{16} \text{ GeV}$

roton to AU).

AXIONS AND ISOCURVATURE

Implications for measuring the scale of primordial inflation

 $m_a \gtrsim 10^{-26} \text{ eV}$ $4 \times 10^{78} \delta eV \gtrsim m_a \gtrsim 4 \times 10^{-11} eV$ $4 \times 10^{4} eV \approx m_a \approx 4 \times 10^{-11} eV$ $4 \times 10^{4} eV \approx 10^{-11} eV$ $4 \times 10^{-11} eV$ Neutrinos CDM Could be probed by ADMX/CASPER (ongoing/upcoming axion search experiments)

Baryons

 $H_I \lesssim 10^{13.5} \text{ GeV}$ $10^8 \text{ GeV} \lesssim H_I \lesssim 10^{10} \text{ GeV}$ $10^6 \text{ GeV} \lesssim H_I \lesssim 10^7 \text{ GeV}$

HIGH-ENERGY COSMOLOGY WITH AXION ISOCURVATURE

The observational/experimental horizon for axion dark matter/dark energy tests is bright! Potential trouble for GUT-scale inflation

ULAS AS AN INFLATIONARY PROBE

B-mode

Spider

CLASS

Fromssehtve Gruzin on Bertog no Boldalseo and Aested for Silk 2013tic March yound, Pope 2015, Matos 2012, Schive 2014, and others)

FUTURE WORK: ULAS AND GALAXIES

Missing satellite problem?

Marsh et al 2014, Klypin 1999, Bullock 2010

CONCLUSIONS

*~1% level constraints on horizon for ultra-light axions
*Lensing is very promising, as is tensor + iso combo
*Work to be done improving theory on galactic scales

Backup slides

LIMITS

Cosmological dark matter

Axion Fundamentals

WHAT AREAXISTAS?

New scalar field with global U(1) symmetry!

$$d_n \simeq 16^{-16} \, \hat{\sigma} \, \epsilon \, \mathrm{m}$$

$$\mathcal{L}_{\mathrm{CPV}} = \frac{\theta g^2}{32\pi^2} \, \theta \tilde{G} \lesssim \frac{\theta - b_0}{f_\mathrm{a}} g^2 G \tilde{G} \quad \mathsf{a} \dots \mathsf{s}$$

* Couples to Sypgauge fields (via fermions) $\mathcal{L}_{CPV} = \frac{1}{32\pi^2}GG - \frac{1}{2}g^2GG$ * Dynamicall $32\pi^2$ as QCDfCP-violation

* Mass through pion mixing

54

Peccei + Quinn (1977), Weinberg +Wilczek (1978), Kin<u>+(1977), Shiman</u> et. al (1980), Zhitnitsky (1980), Dine et al. (1981), D.B. Kaplan (198<u>5)</u>, A.D. Jelson (1985,1990)

Axions solve the strong CP problem

* New field (axion) and U(1) symmetry dynamically drive net CP-violating term to 0

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\rm a}} g^2 G\tilde{G}$$

* Through coupling to pions, axions pick up a mass

$$m_a \simeq \frac{\Lambda_{\rm QCD}^2}{f_a}$$

$$m_a = 6.2\mu \text{ eV} \left(\frac{10^{12} \text{ GeV}}{\Lambda_{\text{QCD}}} \right)$$

$$\Lambda_{\text{QCD}} \simeq 200 \text{ MeV}$$

Strong CP problem

* Strong interaction violates CP through θ -vacuum term

QCD strong-CP problem

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$$

* Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \mathrm{e} \ \mathrm{cm}$$

 $\theta \lesssim 10^{-10}$,

KEY QUESTIONS:

* Can the dark matter or dark energy be an ultra-light boson, like an axion? * Strong interaction violates CP through θ -vacuum term

QCD strong-CP problem $\mathcal{L}_{CPV} = \frac{\theta g^2}{G\tilde{G}} G\tilde{G}$ *What is the connection between the physics of inflation and the physics of the dark sector? Are initial fluctuations in different species spatially locked? * Limits on the neutron electric dipole moment are strong. Fine tuning?

*What new probes of the dark sector \vec{could} we soon have at our disposal? $\theta \lesssim 10^{-16}$, $\theta \in cm$ $\theta \lesssim 10^{-10}$,

in collaboration with R. Hložek (Princeton), D. J. E. Marsh (Perimeter Institute), P. Ferreira (Oxford):

arXiv:1303.3008, Phys. Rev. D 87, 121701 (2013) arXiv:1403.4216, Phys. Rev. Lett. 113, 011801 (2014) arXiv:1410.2896, submitted to Phys, Rev. D

WHAT ARE AXIONS?

New scalar field with global U(1) symmetry! Broken at scale f_a

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\rm a}} g^2 G\tilde{G}$$

* Mass acquired non-perturbatively

- * Small coupling to SM gauge fields
- * Solves strong CP problem

Peccei + Quinn (1977), Weinberg +Wilczek (1978), Kim (1979), Shifman et. al (1980), Zhitnitsky (1980), Dine et al. (1981), D.B. Kaplan (1985), A.E Nelson (1985,1990) 58

Strong CP problem

- * Strong interaction violates CP through θ -vacuum term QCD strong-CP problem $\mathcal{L}_{CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$
- * Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \mathrm{e} \ \mathrm{cm}$$

 $\theta \lesssim 10^{-10} ,$

in collaboration with R. Hložek (Princeton), D. J. E. Marsh (Perimeter Institute), P. Ferreira (Oxford):

arXiv:1303.3008, Phys. Rev. D 87, 121701 (2013) arXiv:1403.4216, Phys. Rev. Lett. 113, 011801 (2014) arXiv:1410.2896, submitted to Phys, Rev. D

Cleaning up the dark matter mess?

60

QCD AXIONS ARE DM CANDIDATES

* Field misaligned $m_a \gg 3H \rightarrow \text{oscillation}$

 $*
ho_a \propto (1+z)^3$ [àsxioldis daadkomatktera tserval djolate

* Axions ARE cold $\Omega_{\text{mis}}h_{a}^{2} = 0.236 \langle \theta_{i}^{2}f(\theta_{i}) \rangle \left(\frac{m_{a}}{8}\right)^{-7/6}$ $v_{a}/c \lesssim 10^{-13}$ at CMB decoupling δ Parados cales

> Solves a problem in particle physics: Gives us a dark matter candidate for free!

QCD AXIONS ARE DM CANDIDATES

* Field misaligned $m_a \gg 3H \rightarrow \text{oscillation}$

 $*
ho_a \propto (1+z)^3$ [àsxioldis daadkomatktera tserval djolate

* Axions ARE cold $\Omega_{\text{mis}}h_{a}^{2} = 0.236 \langle \theta_{i}^{2}f(\theta_{i}) \rangle \left(\frac{m_{a}}{8}\right)^{-7/6}$ $v_{a}/c \lesssim 10^{-13}$ at CMB decoupling δ Parados cales

> Solves a problem in particle physics: Gives us a dark matter candidate for free!

Anthropic axion window: $f_a > \max\{T_{RH}, H_I\}$

* Axion field is relatively homogeneous

$$\left< \theta^2 \right> = \overline{\theta}^2 + \left(\frac{H_I}{2\pi f_a} \right)$$

Vacuum fluctuations from inflation

Misalignment in our Hubble Patch

* Abundance

$$\Omega_a h^2 \simeq 0.43 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{7/6} \theta_i^2$$
$$\Omega_a h^2 \simeq 0.005 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{3/2} \theta_i^2$$

De Sitter expansion imprints scale invariant fluctuations

From Raffelt 2012

 $*\theta$ can be tuned to get DM abundance for many axion masses

Classic axion window: $f_a < \max\{T_{RH}, H_I\}$

* Axion field is very inhomogeneous

$$\left\langle \overline{\theta}_i^2 \right\rangle = \frac{\pi^2}{6}$$

* Defects [domain walls, strings, etc..]

$\mathcal{O}(1) \lesssim \alpha_{\text{defect}} \lesssim \mathcal{O}(10^2)$ **CONTROVERSY!**

* Abundance

 $\Omega_a h^2 \simeq 2.0 \{1 + f_{\text{defect}}\} \left(\frac{f_a}{10^{12} \text{ GeV}}\right)^{7/6}$

From Hiramatsu 2012

Dark matter axion abundance

* QCD axion couples to quarks/pions, temp-dependent mass* High-temp regime

$$m_{\rm a} = 0.02 m_{\rm a}^{(T=0)} \left(\frac{\Lambda_{\rm QCD}}{T}\right)^4 \text{ if } T \gg \Lambda_{\rm QCD}$$

* Low-temp regime $m_{\rm a} = m_{\rm a}^{(T=0)}$ if $T \lesssim \Lambda_{\rm QCD}$

$$\Omega_{\rm mis}h^2 = 0.236 \left\langle \theta_i^2 f(\theta_i) \right\rangle \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{7/6}$$

if $f_a \lesssim 10^{18} \text{ GeV}$

$$\Omega_{\rm mis}h^2 = 0.005 \left\langle \theta_i^2 f(\theta_i) \right\rangle \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{3/2}$$

if $f_a \gtrsim 10^{18} \text{ GeV}$

ULTRA-LIGHT AXIONS (ULAS) IN STRING THEORY

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

Hundreds of scalars with approx shift symmetry

Axiverse! Arvanitaki+ 2009 Vitten and Srvcek (2006), Acharya et al. (2018), CTI & Parat

* Mass acquired non-perturbatively (instantons, D-Branes) Scale of new Scale of extra dimensions ultra-violet physics

ULTRA-LIGHT AXIONS (ULAS) IN STRING THEORY

* Bosons moving in extra dimensions are axions in 4D!

Hundreds of axions

Axiverse! Arvanitaki+ 2009 Witten and Srvcek (2006), Acharya et al. (2010), Cicoli (2012)

Ultra-light axions (ULAS) in string theory

* In string theory, extra dimensions compactified: Calabi-Yau manifolds

Many axions

Axiverse! Arvanitaki+ 2009 Witten and Srvcek (2006), Acharya et al. (2010), Cicoli (2012)

* Mass acquired non-perturbatively (instantons, D-Branes) Scale of new Scale of extra dimensions ultra-violet physics $f_{a_{m_a}}^3$ (in eV) Planck units

STRING THEORY

* One framework that solves SM problems is string theory

Replace point particles with extended objects

* String theory requires 6 extra dimensions that we don't see!

Must be curled up/compactified

COSMOLOGY OF ULTRA-LIGHT AXIONS: Dark matter and dark energy candidates

Light axions and string theory

- * String theory has extra dimensions: compactify (6)!
- Form fields and gauge fields: `Axion' is KK zeromode of form field

ULAs: gravitational constraints

Independent of axion SM couplings: uncertainties astrophysical!

DUST! IR Concentration in sactle physicals uncertainagies

figure adapted from DJEM 2014

$$m_a^2 = \frac{\mu^4}{f_a^2} e^{-\text{Volume}}$$

Flat logarithmic mass distribution: Very low axion masses natural!
THE AXIVERSE: ULTRA-LIGHT AXIONS (ULAS)

Also Witten and Srvcek (2006), Acharya et al. (2010), Cicoli (2012)

COSMOLOGICAL AXION EVOLUTION

Different parameter space for non-QCD axion(Frieman et al 1995, Coble et al. 2007) Misalignment production $V(\theta) \wedge$ Coherent exilartian vertices and the first of <math>DM

DE axions

Oscillation starts too late for struct. formation $a_{\rm osc} > a_{\rm eq}$ $m_a < 10^{-27} \text{ eV}$

Two-photon coupling of axion

* Axions interact weakly with SM particles $\Gamma,\sigma \sim lpha^2$

* Axions have a two-photon coupling

$$g_{a\gamma\gamma} = -\frac{3\alpha}{8\pi f_a} \xi \qquad \qquad \mathcal{L} \propto g_{a\gamma\gamma} \vec{E} \cdot \vec{B}$$

* Very little freedom once f_a specified

Axion Experiments/ Constraints

HOW TO LOOK FOR A QCD AXION

*ADMX: Use the DM axions the universe gives you

 $\mathcal{L} \propto g_{a\gamma\gamma} a \vec{E} \cdot \vec{B} \ g_{a\gamma\gamma} \propto 1/f_a$

P. Sikivie 1983

HOW TO LOOK FOR AXIONS

*By construction, axions interact with photons

 $3\alpha\xi$ $g_{a\gamma\gamma}$ $-\overline{2\pi f_a}$

Limits and horizon

79

Experimental constraints ULA and axion-like particles (ALPs)

Experimental idealer and an and an attact and a second a

 $\mathcal{L} \propto g_{a\gamma\gamma}ec{E}\cdotec{B}$

From arXiv: 1205.2671

Lay of the land

 $[m_v, m_a]$

Axion helioscopes

* Resonance condition $\sqrt{0.02 \frac{P(\text{mbar})}{T(\text{K})}}$

$$qL < \pi \implies \sqrt{m_{\gamma}^2 - \frac{2\pi E_a}{L}} < m_a < \sqrt{m_{\gamma}^2 + \frac{2\pi E_a}{L}}$$

* Broad axion energy spectrum

Axion helioscopes

* Backwards Primakoff process (Sikivie, Zioutas, and many others)
From Irastorza 2013

CAST/IAXO

* CAST

> LHC test magnet (B=9 T, L=9.26 m)

Lakic 2012

* IAXO proposal: 15-20m length magnet, optimized shape [not LHC DUD]

ULA Search Technical Details

ISW TEST

Getting under the hood: The need for numerical care

Getting under the hood: The need for correct (super-horizon) initial conditions

Bucher, Moodley, and Turok, PRD62, 083508, sol'ns can be obtained using this technique, outlined in Doran et al., astro-ph/0304212

ULAS AND THE ANGULAR SOUND HORIZON

/2

Diagram by T. Smith (used with permission)

$$H(z) = H_0 \left\{ \frac{\Omega_m}{a^3} + \frac{\Omega_{\text{axion}}}{a^3 \int [1+w(\eta)]d\eta} \right\}^1$$

Faster early expansion brings LSS closer

ULAs and the CMB: high mass and early ISW

Higher mass (DM-like) case: high-l ISW

90

CONSTRAINTS

*Tight constraints over 7 orders of magnitude in mass:

Thanks to AXICAMB and Planck

*ULAs are viable DM/DE candidates in linear theory outside ``belly" 91

Physics behind the constraints

CMB CONSTRAINTS AT LOW MASSES

*Axion energy density behaves unusually

AXIONS AS DARK ENERGY

Low mass (DE-like) case: late Integrated Sachs-Wolfe Effect

CMB temperature anisotropies from potential decay $\Delta T_{\rm ISW} = -2 \int_0^{\eta_{\rm dec}} d\eta \dot{\Phi}(\eta, \hat{n}\eta)$

ULAS AS DARK ENERGY

Faster early expansion brings LSS closer

ULAS AS DARK ENERGY AND PERTURBATIONS IN OTHER FLUIDS Low mass (DE-like) case: late Integrated Sachs-Wolfe Effect

ULAs and the CMB: high mass and early ISW

Higher mass (DM-like) case: high-l ISW

97

Physics behind the constraints

ULAs and the CMB: high mass and early ISW

CMBattempartituienphistatropistafreminetenziquecay

$$\Delta T_{\rm ISW} = -2 \int_0^{\eta_{\rm dec}} d\eta \dot{\Phi}(\eta, \hat{n}\eta)$$

Physics behind the constraints

LOOK FOR ULTRA-LIGHT AXIONS IN THE COSMOS

Axion deBroglie wavelength

Astronomical length scale kilo-lightyear – giga-lightyear!

Growth of ula perturbations

DATA

*Planck 2013 temperature anisotropy power spectra (+SPT+ACT+BAO) *Cosmic variance limited to $\ell \sim 1500$ *Power spectrum already shown

*WiggleZ galaxy survey (linear scales only $k \leq 0.2h \ \mathrm{Mpc}^{-1}$) *Galaxy bias marginalized over *Theory P(k) convolved with survey window function *240,000 emission line galaxies at z<1

*3.9 m Anglo-Australian Telescope (AAT)

Matter power spectrum for ULA (in DE regime)

Data

Difficult parameter space

$m_a, \Omega_a h^2, \Omega_c h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau_{\rm reion}$

Addressed using nested sampling MULTINEST (Hobson, Feroz, others 2008)

Degeneracies/Weak gravity conjecture

Amendola and Barbieri

Old power spectrum constraints from Amendola and Barbieri, arXiv:hep-ph/0509257

- 1) Grid search
- 2) No isocurvature
- 3) No marginalization over foregrounds
- 4) No lensing, no polarization
- 5) No real Boltzmann code [step in power spectrum, or unclustered DE at low m]
Difficult parameter space

Addressed using nested sampling MULTINEST (Hobson, Feroz, others 2008)

CONSTRAINTS

*Interesting constraints over 7 orders of magnitude in mass:

Thanks to AXICAMB and MULTINEST

*ULAs highly constrained if $10^{-32} \text{ eV} \leq m_a \leq 10^{-25.5} \text{ eV}$ *ULAs are viable DM/DE candidates in linear theory outside ``belly'' 110

AXIONS AND ISOCURVATURE FLUCTUATIONS

* InffationHs an early epoch of accelerated expansion

AXIONS AND ISOCURVATURE FLUCTUATIONS

* Inflation is an early epoch of accelerated expansion

Additional slides: ULAs and galaxies

*Galaxies are biased tracers

Collapse threshold for ULA DM unknown

115

 $\delta_c^{\Lambda \text{CDM}} = 1.686$ $\delta_c^{\Lambda \text{ULA}} = ????$

Fromssehive Gruzing of Backsmologicals coloriso Matthedord Silk 2011 Stick drein yand, Porp. 2015, Matos 2012, Schive 2014, and others)

Missing satellite problem?

Marsh et al 2014, Klypin 1999, Bullock 2010

Dynamical friction, tidal distruption, substructure, halo model, spherical collapse, better simulations (much work to be done!)

117

*Galaxy lensing

*Substructure in halos [flux ratio anomalies in multiply lensed]

ULA substructure?

*Galaxies are biased tracers

*We use hard switch at $k_{osc} = k_{eq}; k_{osc} \equiv a_{osc} H_{osc}$

*Realistic [smooth] treatment of scale-dependent bias needed (incorporating physics of ULA formation in halos)

*Often neglected (but shouldn't be) for neutrinos (LoVerde 2013)