A Tour of Distant Worlds

Laura Kreidberg
University of Chicago

Our Solar System

Four terrestrial planets

Four gas/ice giants

- Formed 4.6 billion years ago from a cloud of gas/dust
- 3 trillion miles across

Solar System Discovery and Exploration

- Mercury, Venus, Mars, Jupiter and Saturn identified by ancient Babylonian astronomers
- Neptune, Uranus, Pluto found between 1781 and 1930
- Spacecraft and rovers sent to planets starting in 1960s

Surface of Mars Curiosity Rover, 2012

First picture of Jupiter Pioneer 10, 1973

Solar System exploration continues today

2014: Philae lands on a comet

There are 300 billion stars in the Milky Way –

How many of them host **planets**?

"Milky Way Night Sky Black Rock Desert NV" - Steve Jurvetson

How Do We Discover Exoplanets?

I. Radial velocity technique

- planet's gravity tugs on the star as it orbits
- star appears bluer as it moves toward us and redder as it moves away

How Do We Discover Exoplanets?

II. Direct imaging block out light from the star to take a picture of the planet

How Do We Discover Exoplanets?

III. Transit technique

planet blocks stellar light as it periodically passes in front of the star

Planets are Everywhere

- First planet discovery in 1995: a hot Jupiter orbiting 51 Pegasi
- Now over 1000 confirmed exoplanet detections
- More than 50% of stars host at least one planet!

A New Era in Exoplanet Science: The Kepler Space Telescope

- Kepler is NASA's first dedicated exoplanet mission
- Fixed field of view
- Monitors 150,000 stars for transiting planets

Highlights: Kepler 16, a circumbinary planet

Highlights: Kepler 78, a lava world

Orbital period = 8.5 hours; temperature > 3,500 degrees Fahrenheit

Highlights: Kepler 62, a 5-planet system

Two planets likely terrestrial and in the habitable zone!

Planet Occurrence Rates from Kepler

Small, Earth-like planets are the most common!

now that we know planets are everywhere,

what is the next step?

Part I: Study the Exoplanet Atmospheres

We want to learn what they're made of, how they formed, what they're like, and whether any host life!

(this is where I come in!)

Exoplanet atmosphere characterization 101:

$$(star + planet) - star = planet$$

Discovery Highlight #1:

We used a record amount of Hubble observation time (4 days!) to detect clouds in the atmosphere of a super-Earth, GJ 1214b

Discovery Highlight #2:

A weather map for the hot Jupiter WASP-43b

Part II: Discover the Nearest Planets

NASA's TESS mission, scheduled for launch in 2017, will search 200,000 nearby stars

Predicted planet yield: 500 Earths and super-Earths

20 rocky habitablezone planets

Part III:

Launch the James Webb Space Telescope, Hubble's successor

James Webb will detect biosignatures on Earth-like planets

Extra Slides

How to See an Exoplanet Atmosphere: Transmission Spectroscopy

The Cutting Edge of Transmission Spectroscopy: Clouds in the Atmosphere of the Super-Earth GJ 1214b

- There must be clouds in the planet's atmosphere to explain the data
- This definitive result was enabled by a high precision measurement using data from a record 3 days of Hubble Space Telescope time

The Future: Towards Earth-Like Exoplanets

Hubble Space Telescope

GJ 1214b

(in the state of the st

Wavelength (μm)

James Webb Space Telescope

