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Outline

* A new telescope search for decaying thermal relic axions:
Phys. Rev. D75, 105018 (2007), astro-ph/0611502
ESO VLT Programme 080.A-06

* Cosmological thermal axion constraints in non-standard thermal histories:
Phys. Rev. D77 08502 0 (2008), arX1v:0711.1352
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Outline, Axions:

* Whence axions?

* Parameter space

* A new telescope search

* Non-standard thermal histories

* Thermal axions 1in non-standard thermal histories
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Axions solve the strong CP problem

* Strong interaction violates CP through 6 -vacuum term

992 ~
3272 GG

* Limits on the neutron electric dipole moment are strong. Fine tuning?

Lopy =

d, ~ 1071 0 e cm
o <1071

* New field (axion) and U(1) symmetry dynamically drive net CP-violating term to 0

0g> .~ a o =~
59,3 GG — —ag GG

Lcpy =

* Through coupling to pions, axions pick up a mass
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What are axions?

* Axions interact weakly with SM particles 1, 0 o o
* Axions have a two-photon coupling
B 3045 §—4<(E/N 2(4——7“)\>
Jayy = 87Tfa 3 N 3(1 B T))
* Two populations of axions:
Cold (nonthermal) axions (thermal) axions
m, < 107% eV m, > 107% eV

m —1.18 5 M, 10
O h2 ~0.13 ( a ) QB2 ~ ( )
10-5 eV 130 eV \ g«q.F
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Hot axion production at early times

103§ '

Axion Production:

102,

10E
aw :
\
L u
1§

10-1

T (in MeV)

* Axions produced through interactions between non-relativistic pions
in chemical equilibrium with rate

— /
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Context: Axion constraints

fa
GeV 1012 109 106 103
i | |
| I TTIH
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ADﬂ/lX TeY CAST Telescope Collider constraints
Cold DM Toulouse group Excess radiation

Globular cluster stars (photons)

SN1987A v Burst duration # of Kamio e\l/ents
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Context: Axion constraints
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Axion models and EM couplings

Channel 1--DFSZ Channel 2--KSVZ/DFSZ

q T

. —

* Axions interact weakly with SM particles 1, 0 o

* Axions have a two-photon coupling
3

Jory = Tgn fa
_ 2(44+z
§ = % {E/N_ 321+z§}
* £ is model-dependent and may vanish

§=3{E/N —1.92+0.08}
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Axion decay

24, 800A

* Axion decays monochromatically via @ — 7y with [\ =

in source frame e,V

* For galaxies/ clusters, line comparable to sky background

])\O X mngZ/ (1 -+ Zd)4

* First attempt made at KPNO 2.1m using Gold spectrograph on Abell
clusters A1413, A2218, and A2256:

3eV<m, <8eV

£ <0.08 11
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* VIMOS IFU (VLT, 6400 fibers) has largest f.o.v. of any instrument in its
class: 54”x54” mode used

* LR-Blue grism used: 4000A < X\ < 6800A 4.5 eV <m, <T7.7eV).
Dispersion of 5.4A adequate to resolve axion line:

o\ = 195 01000 m;év A

* 10.8 ksec exposures of A2667 (z=0.233, 1 pointing) and A2390 (z=0.228,
3 pointings) taken as part of VIMOS study of these clusters

12
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Applying the imaging

*Bright sources masked
13




Lensing maps

A2667 A2390

0.001 0.002 0.003  0.004 0.005 0.006 (.002 0.004 0.006 0.008 0.01

»(10"2 M, pix?)

* Cluster galaxies selected by redshift

* BCG, galaxies near arcs, cluster-scale mass component modeled individually

ZQ”I"Q 1 1
S (R) = -
(&) 1 —7ro/7s <\/7°8—|—R2 \/’rt2+R2>



Are we kidding ourselves? No!

No axion line inserted
HEEE 2000 |
1 2 3 4 )

6 7 8

1071% erg em™2 571 AT 15
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Data analysis

* Signal modeled as sum of density-dependent signal and uniform sky
background with noise (Poisson, CCD bias, read-out, flat-fielding,
fiber crosstalk , mass map errors)

19 = (In/$12) L12,i + ba

* End result is a 1D spectrum of the cluster. Fibers weighted to extract
density-dependent part of signal: (I />12)

16
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the optical axion window

1 B % T YA S ¥ Sensitivity improves at

: - higher redshift!
107! = N

e KSVZ E/N=2

CRRIIARIROaRy T, _ —4

fﬁ é‘x"& ~~~~~~~~~~~~ i I>\O X mZJ (1 —I_ ZCI)
10_2 ﬁ_ %é x%iﬁxgxé%«xé '''''''' _; ma — 24, 800 A (1 _|_ ZCI) /)\a

- K : E ]_ 2 —3 2
w F & : £ 2 (14 20) Y

_Skv Li e ]
10-3 = y Lines \~\‘ _

= ~. -

- - .

- \§ —]

\\

~ —--. A2218/A1413/A2256 (reported) =~ |
10_4 m—— . cpe ~\~ —

- —-— Projected Sensitivity (RDCS 1252) =

- - Existing Limits (DEBRA) .

R R N N T TR T AN NN SR T NN S S N R S N S

6 8 10 12 14
m_ (in eV) 18
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RDCS 1252

* RDCS1252isa8 x 10 M
cluster at £ = 1.237

* Allotted 25 hrs of time for
VIMOS IFU spectra using LR-
Blue grism

* Publicly available weak-lensing
mass maps (Lombardi et al.
2005), 2 arcs?

3 pointings cover range of
19 WL mass contours
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Context: Axion constraints

f
va 1012 10° 106 109
IR |
| [ TTHH
Mg ueV meV eV keV
Collider comstraints
Cold DM

SN1987A v Burst duration # of Kamio e\l/ents
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The physics of cosmological
axion constraints

2.0

* Axions are relativistic at early

. 1. [
times, free stream and suppress °f

power by AP/P ~ —8Q, /Oy,
when \ < \g

1.6

log(g.)

1.4 _
* SDSS galaxy P(k) and WMAP1 _
yield exclusion region

(Hannestad et al. 2004)

1.2

o

¥ Need oo % 8T toagree At = Aw =30 A~ Mpe
with data

* 2D constraints can be applied to
our two-parameter (m,, T}1,)
model oX|
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Motivation for low-temperature
reheating

* No strong evidence for nature of expansion history before 4 MeV

* Thermal gravitino bounds (closure, BBN) require Ty, < 10% GeV
or Tiop, 1 GeV

* Light SM neutrinos become a viable WDM candidate if
Trh ~1—10 MeV

* If gravitational decay of string theory modulus reheats the universe:

Tin ~ 10 MeV (22.)?/2
22
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Low-temperature reheating (LTR)

* Simple model in which ¢ — radiation is responsible for extended
reheating phase

* T 2 4 MeV to avoid changing successful predictions of BBN

* Decay products thermalize and entropy generated

* Past work considered effects on WIMP, SM neutrino, sterile

neutrino, and cold axion abundances and constraints. New work:
LSS/ CMB/ total density constraints to hot axions in LTR 23
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Low- temperature reheatmg (LTR)

108 | | | 10-13 | |
[ —
I ; >
o T :
: e
s L
= : 10729 " | | .
= | 10451 | | | —
- i
10-4 | ! |
10-8 ! ]
: | 33 | I
10-25 10 10‘1 1 10 102
T (in MeV)

* Entropy generation slows down temperature decrease

* Hubble expansion is faster

T T T then A T
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Axion abundance in LTR

* Higher 1% means higher N T

initial equilibrium abundance

* Entropy generation 1 0-1;_ -
dramatically suppresses X :

abundances ~N . ol -

o® 1073 :

10 F <
10

T, (in MeV)

25
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New constraints

x )\fs (Trha ma) & QahQ (Trh7 ma)
calculated to trace out
allowed region

50 100 150 200 290
T . (in MeV)

i 55, 0 LS s completly cd
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Axionic contribution to pre-BBN
radiation energy density in LTR

I ' I
3.6 _
* Axions are relativistic at T~ 1 3.4 -
MeV and contribute to [V ﬁff Neff
v i -
3.2} _
* Entropy generation suppresses ' :
the axionic contribution to [NV Ifﬁ o —m_ =10 eV .
- ——m_=5 eV
2.6 N
10 100
T, (in MeV)

27
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Future limits from abundance of *He

o ————rrrrr —
* N contributes to H (T 361 m =78 eV Npmex
during radiation domination, : i .
setting the abundance of “He 34l ma1 1.4 eV ]
* Current measurements yield o F t . — .
C()nstraint Neﬁ‘ < 3 8 Nu 3.2 Predicted CMBPol Sensitivity —
S < 3.
* 4He affects CMB TT, TE, and EE 3+ -
spectra: CMBPOL constraints! :
1 ! A A
<8 10 100

T . (in MeV)
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SUrveys

r---—-—=—7"77"7"7"7"7"7"7¥"7¥"7>"7¥”7¥7¥”7¥%¥7¥”¥%7¥”7¥*¥ 7”7~ 7/ =77~ |
| -1
1000 1 "77T7C Amin=1 1 Mpc =
C -2 ]
% LSST predicted to reach AP/P ~ 107 R AP/P~10 i
for a sample population similar to = - | il
SDSS main ;) 100 & =
* Assuming 21-cm or Lya: observations E@ I 7
on very small comoving scales, limits 10
at low reheating temperatures may be -
improved :
1

50 100 150 200 200
T . (in MeV)
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Daniel Grin
in collaboration with Christopher M. Hirata
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OUTLINE

* Motivation: CMB anisotropies and recombination spectra
* Recombination 1n a nutshell

* Breaking the Peebles/RecFAST mold

* : a new tool for high-n states

* Forbidden transitions

* Results

* Ongoing/future work
31
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CLONE WARS

* Planck (launched May 2009) will
make cosmic-variance limited

CMB anisotropy measurements up
to 1~2500 (T), and 1~1500 (E)

» Wong 2007 and Lewis 2006 show
that x.(2) needs to be predicted to
several parts in 10* accuracy for

PLANCK

Planck data analysis

iy ..l/. .:
i v
=

CMB ANISOTRPOIES EPISODE Il ATTACK OF THE POWER SPECTRUM ONES
MATIAS ZALDARRIAGA UROS SELJAK CHUNG-PEIMA WAYNE HU

STEVEN WEINBERG MAX TEGMARK EDMUND BERTSCHINGER

and NAOSHI SUGIYAMA  PRODUCED BY KRIS STANEK and MATIAS ZALDARIAGGA
DIRECTED BY ANDREW FRIEDMAN, HARVARD UNIVERSITY, SPRING 2003

P® - - =

32
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RECOMBINATION, INFLATION, AND REIONIZATION

Planck uncertainty forecasts using MCMC

SN SN AN

0.93 094 095 096 0.97 0.98 302 3.04 3.06 oozz 00225 0.023
Iog[1010A]

*  Cosmological parameter inferences will be off 1f recombination 1s improperly modeled
(Wong/Moss/Scott 2007)

*  Leverage on new physics comes from high 1. Here the details of recombination matter!

* Inferences about inflation will be wrong if recombination 1s improperly modeled

/ 2
Hs:1—4€‘|—277 Ezmil |:V(¢):|

Need to do eV physics right to infer anything about 10" GeV physics!ss
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RECOMBINATION, INFLATION, AND REIONIZATION

Planck uncertainty forecasts using MCMC

SN SN AN

0.93 094 095 096 0.97 0.98 302 3.04 3.06 oozz 00225 0.023
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*  Cosmological parameter inferences will be off 1f recombination 1s improperly modeled
(Wong/Moss/Scott 2007)

*  Leverage on new physics comes from high 1. Here the details of recombination matter!

* Inferences about inflation will be wrong if recombination 1s improperly modeled

ng = 1 —4e + 2n e Ml [V’(qs)r A2 _ 32V

S 75 m4le
D

Need to do eV physics right to infer anything about 10" GeV physics!ss
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RECOMBINATION, INFLATION, AND REIONIZATION

Planck uncertainty forecasts using MCMC
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ORIGIN OF EFFECTS ON CMB TEMPERATURE

* Thompson scattering decouples during Ndec
recombination: Visibility function! T= ]9 TNe0T a(n)dn
g(t) =7e”’
* Diffusion (Si1lk) damping scale set by

Ldamp ~ 1000

* Relic z.(z) sets probability of re-scattering
CMB photon through 7

Cl —> 016_2T(Z) it [ > ndec/n(z)

* Duration of decoupling determines amt. of time available to develop a
quadrupole and then re-scatter that quadrupole to polarize CMB

34
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ORIGIN OF EFFECTS ON CMB TEMPERATURE

* Thompson scattering decouples during

Tldec
recombination: Visibility function! T = J, NeOT a(n) dn
g(t) =717
* Diffusion (Si1lk) damping scale set by o0f

10

* Relic z.(z) sets probability of re-scattering
CMB photon through 7

Cl — 016_27(2) if [ > ndec/n(z)

P -
L .

A A A l‘llll A A e l‘l‘ll e A p e ‘llll e l
W. Hu 11/00 10

100 1000

* Duration of decoupling determines amt. of time available to develop a
quadrupole and then re-scatter that quadrupole to polarize CMB

34
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SPECTRAL DISTORTIONS

T T T T 1T T ] T T T T 1T T T T T T L
Wavelength A [um]
10° 10° 10 10° w0 ||
6 T 1T T T T T [!! T T T T T [!! T T T T T [!! T T T T T L
1 . 27|
0 e 107
TO_S - 1 Lo
L CMB Nad i i
-10_ Ve ‘ | =
10 /;\/J 3 i
7]
5 o121 — g i
b= =2 ADIO SOURCES CONTRIBUTION 2
= s T T T IE 28
— 1074 =, 10
~ > B
T o-18 =
10 T 167
10_18 — CMB SPECTRAL DISTORTIONS .
-20
10 — — J ' ! \ \ L1
1 1 1 1 L1 1 l\ 1 1 1 1 L1 1 l\ 1 .'l / //
1 10 100 1000 1(@-29' L TR L Lol L L
Frequency v [GHz] 0.1 1 10 100
v [GHz]

* Deviations from perfect CMB blackbody due to recomb. lines
could be detected someday
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SAHA EQUILIBRIUM IS INADEQUATE

* Chemical equilibrium does reasonably well
predicting “moment of recombination”

3/2
re (13.6) / £35.9-13.6/ Toy
1 — Le TeV

*Further evolution falls prey to reaction freeze-out

['=6 x 10722 eV 2. (T) (13.6/T.y) /" In(13.6 /Tuy)
H=11x10"% eV T}
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BOTTLENECKS/ESCAPE ROUTES

e BOTTLENECKS
* (Ground state recombinations are ineffective

® Resonance photons are re-captured, €.g. Lyman «

e ESCAPE ROUTES (e.g. n=2)

s Two-photon processes
HQS _ Hls _I_,y_l_,y

s Redshifting off resonance _ 37
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EQUILIBRIUM ASSUMPTIONS

* Radiative eq. between different n-states

*Radiative/collisional eq. between different |

*Matter 1in eq. with radiation due to Thompson scattering

38




BREAKING THE MOLD

* Radiation field 1s cool: Beltzmann-eg—othighern
* Seager/Sasselov/Scott (2000) 7max = 300

* Eguthibrigm between [ states

* Treated by Chluba et al. (2005) for nmax = 100

* Radiation and matter field fall out of eq.

. Sr.oral?
Ths + 2HT,, — Ty

(TM i Tfy)

3MeC (1 + fHe + ZCe)




BREAKING THE MOLD

* Radiation field 1s cool: Beltzmann-eg—othighern

= Seager/Sasselov/Scott (2000) 7max = 300 RecFAST!!I
* Equihbrium between [ states

* Treated by Chluba et al. (2005) for nmax = 100

* Radiation and matter field fall out of eq.

. Sr.oral?
Th + 2HT,, — e’

(TM N Tfy)

3Mmec (1 + fHe + ZCe)




BREAKING THE MOLD

* Radiation field 1s cool: Beltzmanneq—othischern

- Seager/Sasselov/Scott (2000) 7imax =300 RecFASTIII

* Equithibrrom between / states

\
+ Treated by CHUHETENEIB ORI

* Radiation and matter field fall out of eq.

SmeaTaT,;l
3Mmec (1 + fHe + xe)

Tar +2HT,, = (T —T)
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BREAKING THE SIMPLEST MODEL

* Radiation field 1s cool: Beltizmanneg—othichern
* Treated by Seager et al. (2000)

* Egquihibrram between [ states: Al = +1 bottleneck
* Treated by Chluba et al. (2005) for nmax = 100

* Beyond this, testing convergence with 7,55 1S hard!

tcompute ~ O (weeks)

How to proceed if we want 0.1% accuracy in x.(z) ?

40




THE MULTI-LEVEL ATOM (MLA)

* Bound-free rate equation (Rates from recursion, checked with WKB)

* Bound-bound rates (Rates from Gordon+recursion, checked with WKB)

bb __

CEnl I

Zn’ A==

/ /
—1(Aflnl,n’ (1 + fnn’)xn’,l’ g;;/ fnn’aj’nl) P,rlbln/

41
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THE MULTI-LEVEL ATOM (MLA)

Spontaneous
|

* Bound-free rate equation (Rateg from recursion, checked with WKB)

* Bound-bound rates (Rates froth Gordon+recursion, checked with WKB)

bb __

CEnl I

Zn’ A==

/ /
—1(Aflnl,n’ (1 + fnn’)xn’,l’ g;;/ fnn’mnl) P,rlbln/

41
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THE MULTI-LEVEL ATOM (MLA)

Stimulated

* Bound-free rate equation (Rates from recursion, checked Mith WKB)

* Bound-bound rates (Rates from Gordon4#ecursion, checkgd with WKB)
v

. / /
x% — Zn/,l’:lzzl(Agvl/n’(l + fnn’)xn’,l’ gg;i/ fnn’wnl) P,rlfn/

41
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THE MULTI-LEVEL ATOM (MLA)

* Bound-free rate equation (Rates from recursion, checked with WKB)

* Bound-bound rates (Rates from Gordon+recursion, checked with WKB)

. / /
37[;3 — Zn/,l’:lzzl(Agvl/n’(l + fnn’)xn’,l’ gg;i/ fnn’wnl) P,rlfn/

* Phase-space density blueward of line

* Escape probability of resonance photon

41
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THE MULTI-LEVEL ATOM (MLA)

* Two photon transitions between n=1 and n=2 are included:

: : —Fos_15/T
s—1s, — T Lls—2s, — s\ 7 42s S 2ot
T2s—15,2 T1s—2s2y = Nog(—T2s + T15€ /”)

* Net recombination rate:

Le = 1 — Lls — 336 = —X1s — —L1s—2s

_I_Zn,l>1SA {gnlf 171 — (1 + ;l)xnl}

42
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RADIATION FIELD: BLACK BODY

* Escape probability treated in Sobolev approx.

N e _cna gf;' A -
P = Ts T 8rH s, Ann gl T
R(v. 1) = Oy ! Uth <\

* Excess line photons 1njected into radiation field

87TV2n/ + _ B All/ Pll/ I 1 I gib T
3 (fnn’ I fnn’) = Anpn/Lnn |Ln ( + fnn/> — 7$n’fnn’
C-"Nyg g,

* Photons are conserved outside of line regions

10 [1=(n+1)"" _
10 10
s n+1,1 2 (1+2)-1 13
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RADIATION FIELD: BLACK BODY+

* Escape probability treated in Sobolev approx.

/
ph, = _ ¢ [ In l

n,n’

R(v,v') = ¢(v)o(v')

® Ongoing work by collabs and others uses FP eqn. to obtain
evolution of f(v) more generally, including atomic recoil/diffusion,
and full time-dependence of problem, coherent and incoherent
scattering, overlap of higher-order Lyman lines, 2+ decay

4l
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written 1n matrix form

dﬁ
d—f —R7+ 3

45




STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written 1n matrix form
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written 1n matrix form

17
d—f:I.{a?an

For state 1, includes BB transitions out of 1 to all other 17,
photo-ionization, 2+ transitions to ground state

45
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written 1n matrix form

dx

For state 1, includes BB transitions into 1 from all other I’

45
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written 1n matrix form

® Includes recombination to |,
1 and 2~ transitions from ground state 25




STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written 1n matrix form

dﬁ
d—f —R7+ 3

e Forn>1, tl~107%s <R ,§—>Z~R'S

rec

R <1s ! (e.g. Lyman-«) 45
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RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

* Matrix is ~ n? X n2

* Brute force would require An®  ~ 1000 s for 1n,,,, = 200
for a single time step

00O
* Sparsity to the rescue: Al = +1 5 E. (l) 8

M —12—1 + My 12 + M 14:1Z141 = S

- — — 0 — l/—l
Ul = X1 {Sz — My 110 + X ;01050 (—1) }

o { M| if [ =0 o11—1 = My —1x1-1
— —1 .
(Migr41 — MypoxaMigg) i 0> 0 01 = 01,i+1Mi11,i X
Y Y _|_ Y
* generates rec. history with 108 precision, with computation

time ~ nmax>>° Huge improvement!

* Case of nymax = 100 runs in a day, n,.x = 200 takes ~ 1 week.
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FORBIDDEN TRANSITIONS AND RECOMBINATION

* Higher-n 2+ transitions in H important at 7- o for Planck (TT/EE) data
analysis (Hirata 2008, Kholupenko 2006)

* Some forbidden transitions are important in Helium recombination

(Dubrovich 2005, Lewis 2006) and would bias cosmological parameter
estimation.

* Unfinished business:

47
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QUADRUPOLE TRANSITIONS AND
RECOMBINATION

* Electric quadrupole (E2) transitions are suppressed but conceivably not
irrelevant at the desired level of accuracy:

quad
Am,l:l:2—>n,l

_/1dipcﬂe

m,l+1—n,l

~a’ b x107°

* Coupling to ground state will overwhelmingly dominate:

f4quad 605 ) 1 5)
,2—1,0 L n2 .
mETD o 2L = L > 1024 if m > 2
f4quad WO 1 1
n,2—m,0 nm m? n?

* GS E2 lines are optically thick!
Rx AP «x A/t — const if 7> 1

* Magnetic dipole rates suppressed by several more orders of magnitude

* Hirata, Switzer, Kholupenko, others have considered other "forbidden’

processes, two-photon processes in H, E2 transitions in He 48
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QUADRUPOLE TRANSITIONS AND RECOMBINATION

* Lyman lines are optically thick, so nd — 1s immediately

followed by 1s — np, so this can be treated as an
effective d — p process with rate A,,g—1sCnd.

* Same sparsity pattern of rate matrix, similar to 1-changing collisions

* Detailed balance yields net rate R?Llcllafnp = Apd—1s (a:nd — ga:np>
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DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

RecSparse f———— -1 rrrm -

— nmax — 140 /f___ ] /"_\\ =
0~ ,r/ ”””””””” - S
output _ g _ — :
i s ] S ]
i R § < 7z=12565| -
—<0 — /,l // B e T e / | ====-- 7z=835 —
Axgs . S ] PO il i

xedo | Tl / /
i - / ] / 1
(in %) _4:0 N / ——\\ / -
N / . ~</ -
i / ] |
B // i i
- 60 — / — _|
- \\\ / — .
- ~./ n =25 n =140 -
sl | | | N | T | Lol Lol _

1 10 1 10 100
1+1 1+1

l-substates are highly out of Boltzmann egb’m at late times
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DEVIATIONS FROM BOLTZMANN EQUILIBRIUM:

DIFFERENT N-SHELLS
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51

Monday, September 27, 2010



DEVIATIONS FROM SAHA EQUILIBRIUM

HUGE DEVIATIONS FROM SAHA EQ!

I I 1T T || I I T 11 || ]
| __ Nmax — 140 _‘
: ST S
- o .
B ,/’/ ]
101 b 7 2—1255| _
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Xn E /.’.l// """""" - 21681 E
X 10-2 == S ——— 7Z=000 B
= / E
- / -
- / ]
10_3 = / —
S / E
- / .
L / ]
10_4 E_—_./ —
- L] R -

10 100

n

* n=1 suppressed due to freeze-out of x,
*  Remaining levels ‘try’ to remain in Boltzmann eq. with n=2
*  Super-Boltz effects and two--y transitions (n=1— n=2) yield less suppression for n>1

* Effect larger at late times (low z) as rates fall 50
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RESULTS: RECOMBINATION HISTORIES INCLUDING HIGH-N

10°
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Redshift (z)

106

* T (2) falls with increasing n.x = 10 — 200, as expected.
* Rec Rate>downward BB Rate> Ionization, upward BB rate

* For nynqe = 100, code computes 1n only 2 hours -
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RESULTS: TT C;s WITH HIGH-N STATES

Super-horizon scales don’t care about recombination

= | | | | | | | | | | | | | | =
107% é— Nmax = 100 VS. Npax = 00 E
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RESULTS: EE C;s WITH HIGH-N STATES
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e~ T plateau
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Sample variance for Planck
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RESULTS: RECOMBINATION WITH HYDROGEN
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WRAPPING UP

* RecSparse: a new tool for ML A recombination calculations
(watch arXiv in coming weeks for a paper on these results)

* Highly excited levels (n~150 and higher) are relevant for
CMB data analysis

* E2 transitions in H are not relevant for CMB data analysis

* To do: include collisions and line overlap 1n
RecSparse

* Full incorporation into CosmoMC and analysis of
errors/degeneracies with cosmo. parameters

57
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Subtleties

*  Non-equilibrium production
* Tg 2 200 MeV necessitates use of different cross sections
* At low values of m,, coherent oscillation may become important

* For very low 1}, v may not have time to thermalize, and 7m may fall out of
equilibrium

*  All these effects negligible for T, = 10 MeV and m, 2 0.6 eV

Y
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Kination

* Kination refers to an epoch (typically pre-BBN) during which the universe’s energy
budget is dominated by the kinetic energy of a scalar field

* Kination may alleviate the challenges of EW baryogenesis and be relevant in
quintessential inflation

* No entropy generation during kination, so kination complements LTR
* Analysis does not rely on details of kination models, general for models with

H = H,,q (T/Tyin) until Ty, H = Hynq afterwards

* Past work considered neutralino abundance in kination models. New work: LSS/CMB/
total density constraints to hot axions in kination models
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constraints

* In the case of kination, the new constraints are less dramatically different:

If Tkin >~ 10 MeV, the allowed regions are m, < 3.2 eV and (17 eV S ma S 26 eV.
If Txin 2 110 MeV, standard results are recovered.
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2 axion populations: Cold axions

0

* Before PQ symmetry breaking, 6 is generically displaced from vacuum value

* EOM: é—l— SHO+m2(T)0 =0 m,(T)~0.1m, (T =0) (AQCD/T)3'7

% After m, (T') 2 3H (T'), coherent oscillations begin, leading to n, oc a ™

* Relic abundance ([ Q.h° =~ 0.13 X g (6p) (ma/10—5ev)—1.18

* Particles are cold
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Context: Axion constraints

fa
GeV 1012 109 106 103
IR |
| [ T
Mg ueV meV eV keV
ADﬂ/lX PVILAS | CAST Telescope Collider constraints
Cold DM Excess radiation

Globular cluster stars (photons)

SN1987A v Burst duration # of Kamio e\l/ents
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Pitfalls of direct axion searches

fa
GeV

Mg ueV

1012 10°

1=\ eV

Cold DM

SN1987A v Burst duration

106 103
LN |

keV

Collider constraints

Searches usingl hadronic couplings

# of Kamio e\lrents

X Searches using non-vanishing nuclear couplings (resonant detection of solar axions

using Fe, Kr, and Li) yielding first results

* Other model independent constraints desirable
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ORIGIN OF EFFECTS ON CMB POLARIZATION

* Need to scatter quadrapole to polarize CMB
. _ S
0; (k) = / dnte” ™01 (k,n) ——ji (kn)
(kn)

* Need time to develop a quadrapole

k
©; (kn) ~ Z—Z@l (kn) < ©;(n) if [ > 2, in tight coupling regime
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results: cmb anisotropies with hydrogen
quadrupoles, temperature (tt) ;s

ACZ — Cl‘ —

with FE2 transitions

xe‘no FE2 transitions °

Bulk of integral from! late times, higher n,,,x — lower z,
— lower 7 — higher e=2T — higher C|
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results: cmb anisotropies with hydrogen
quadrupoles, temperature (tt) ;s

TT AC[ — Cl‘ —

with FE2 transitions

xe‘no FE2 transitions °

Overall effect is
negligible for upcoming
CMB experiments!

Bulk of integral from! late times, higher n,,,x — lower z,
— lower 7 — higher e=2T — higher C|
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