

EXCITEMENT IN eV-SCALE PHYSICS: TWO COSMOLOGICAL CONSEQUENCES

I. Thermal axions II. High-n hydrogen states and cosmological recombination

> Daniel Grin Astronomy Colloquium University of British Columbia 23/10/09

THERMAL AXIONS: Telescope searches and cosmological constraints in non-standard thermal histories

Work done in collaboration with Marc Kamionkiowski, Giovanni Covone, Tristan Smith, Eric Jullo, Jean-Paul Kneib, and Andrew Blain

Outline

- * A new telescope search for decaying thermal relic axions: Phys. Rev. D75, 105018 (2007), astro-ph/0611502 ESO VLT Programme 080.A-06
- Cosmological thermal axion constraints in non-standard thermal histories: Phys. Rev. D77 08502 0 (2008), arXiv:0711.1352

Outline, Axions:

- * Whence axions?
- * Parameter space
- * A new telescope search
- * Non-standard thermal histories
- * Thermal axions in non-standard thermal histories

Axions solve the strong CP problem

* Strong interaction violates CP through θ -vacuum term

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$$

* Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \mathrm{e} \ \mathrm{cm}$$

 $\theta \lesssim 10^{-10}$

* New field (axion) and U(1) symmetry dynamically drive net CP-violating term to 0

$$\mathcal{L}_{\rm CPV} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\rm a}} g^2 G\tilde{G}$$

* Through coupling to pions, axions pick up a mass

 $z \equiv m_{\rm u}/m_{\rm d}$

What are axions?

* Axions interact weakly with SM particles $\Gamma, \sigma \propto lpha^2$

* Axions have a two-photon coupling

$$g_{a\gamma\gamma} = -\frac{3\alpha}{8\pi f_{a}}\xi$$
 $\xi \equiv \frac{4}{3}\left\{E/N - \frac{2(4+r)}{3(1+r)}\right\}$

* Two populations of axions:

Cold (nonthermal) axions $m_{\rm a} \lesssim 10^{-2} \ {\rm eV}$

$$\Omega_{\rm a} h^2 \simeq 0.13 \left(\frac{m_{\rm a}}{10^{-5} \text{ eV}}\right)^{-1.18}$$

Hot (thermal) axions $m_{\rm a} \gtrsim 10^{-2} \ {\rm eV}$

$$\Omega_{\rm a} h^2 \simeq \frac{m_{\rm a}}{130 \text{ eV}} \left(\frac{10}{g_{*_{\rm S}},{_{\rm F}}}\right)$$

6

Hot axion production at early times

 Axions produced through interactions between non-relativistic pions in chemical equilibrium with rate

$$\Gamma \sim n_{\pi} \langle \sigma v \rangle = \frac{T^2 m_a^2 (1-r)^2}{9z f_{\pi}^4 m_{\pi}^2} \left(\frac{m_{\pi} T}{2\pi}\right)^{3/2} e^{-m_{\pi}/T}$$

Context: Axion constraints

Context: Axion constraints

SN1987A v Burst duration

of Kamio events

Axion models and EM couplings

- * Axions interact weakly with SM particles $\ \Gamma, \sigma \propto lpha^2$
- * Axions have a two-photon coupling

$$g_{a\gamma\gamma} = -\frac{3\alpha}{8\pi f_{\rm a}}\xi$$
$$\xi \equiv \frac{4}{3} \left\{ E/N - \frac{2(4+z)}{3(1+z)} \right\}$$

* ξ is model-dependent and may vanish

$$\xi = \frac{4}{3} \left\{ E/N - 1.92 \pm 0.08 \right\}$$

Axion decay

- * Axion decays monochromatically via $a \rightarrow \gamma \gamma$ with $\lambda_a = \frac{24,800\text{\AA}}{m_{a,eV}}$ in source frame
- * For galaxies / clusters, <u>line</u> comparable to sky background

$$I_{\lambda_{\rm o}} \propto m_{\rm a}^7 \xi^2 \Sigma / \left(1 + z_{\rm cl}\right)^4$$

 First attempt made at KPNO 2.1m using Gold spectrograph on Abell clusters A1413, A2218, and A2256:

$$3 \text{ eV} \le m_{\mathrm{a}} \le 8 \text{ eV}$$

Seeking axions with the VIMOS IFU

- * VIMOS IFU (VLT, 6400 fibers) has largest f.o.v. of any instrument in its class: 54"x54" mode used
- ★ LR-Blue grism used: $4000\text{\AA} \le \lambda \le 6800\text{\AA}$ (4.5 eV ≤ $m_a \le 7.7$ eV). Dispersion of 5.4Å adequate to resolve axion line:

$$\delta \lambda = 195 \ \sigma_{1000} \ m_{\rm a,eV}^{-1} \ {\rm \AA}$$

* 10.8 ksec exposures of A2667 (z=0.233, 1 pointing) and A2390 (z=0.228, 3 pointings) taken as part of VIMOS study of these clusters

Applying the imaging

*Bright sources masked

Lensing maps

- * Cluster galaxies selected by redshift
- * BCG, galaxies near arcs, cluster-scale mass component modeled individually

$$\Sigma(R) = \frac{\Sigma_0 r_0}{1 - r_0 / r_{\rm t}} \left(\frac{1}{\sqrt{r_0^2 + R^2}} - \frac{1}{\sqrt{r_{\rm t}^2 + R^2}} \right)$$

Are we kidding ourselves? No!

15

Data analysis

* Signal modeled as sum of density-dependent signal and uniform sky background with noise (Poisson, CCD bias, read-out, flat-fielding, fiber crosstalk, mass map errors)

$$I_{\lambda,i}^{\text{mod}} = \langle I_{\lambda} / \Sigma_{12} \rangle \Sigma_{12,i} + b_{\lambda}$$

* End result is a 1D spectrum of the cluster. Fibers weighted to extract density-dependent part of signal: $\langle I_{\lambda} / \Sigma_{12} \rangle$

Data analysis

Extending the optical axion window

RDCS 1252

- * RDCS 1252 is a $8 \times 10^{14} M_{\odot}$ cluster at z = 1.237
- Allotted 25 hrs of time for
 VIMOS IFU spectra using LR-Blue grism
- * Publicly available weak-lensing mass maps (Lombardi et al. 2005), 2 arcs?

3 pointings cover range of WL mass contours

Context: Axion constraints

SN1987A v Burst duration

of Kamio events

The physics of cosmological axion constraints

- * Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$
- SDSS galaxy P(k) and WMAP1
 yield exclusion region
 (Hannestad et al. 2004)
- * Need $g_{*_{\rm S},{\rm F}} \gtrsim 87$ to agree with data
- * 2D constraints can be applied to our two-parameter $(m_{\rm a}, T_{\rm rh})$ model

Motivation for low-temperature reheating

- * No strong evidence for nature of expansion history before 4 MeV
- * Thermal gravitino bounds (closure, BBN) require $T_{\rm rh} \lesssim 10^8 {
 m ~GeV}$ or $T_{\rm rh} \lesssim 1 {
 m ~GeV}$
- * Light SM neutrinos become a viable WDM candidate if $T_{
 m rh} \sim 1-10~{
 m MeV}$
- * If gravitational decay of string theory modulus reheats the universe:

$$T_{\rm rh} \sim 10 \,\,{\rm MeV} \left(\frac{m_{\phi}}{{
m TeV}}\right)^{3/2}$$

Low-temperature reheating (LTR)

* Simple model in which $\phi \to {\rm radiation}$ is responsible for extended reheating phase

$$\frac{d\rho_{\rm R}}{dt} + 4H\rho_{\rm R} = \Gamma_{\phi}\rho_{\phi} \qquad \frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi}$$

- * $T_{\rm rh} \gtrsim 4$ MeV to avoid changing successful predictions of BBN
- * Decay products thermalize and entropy generated

$$T = \left[\frac{30}{\pi^2 g_*(T)}\right]^{1/4} \rho_{\rm R}^{1/4}$$

 Past work considered effects on WIMP, SM neutrino, sterile neutrino, and cold axion abundances and constraints. New work: LSS/CMB/total density constraints to hot axions in LTR

23

Low-temperature reheating (LTR)

* Entropy generation slows down temperature decrease

 $T \propto a^{-3/8}$ until $T \lesssim T_{\rm rh}$, then $T \propto a^{-1}$

* Hubble expansion is faster

 $H \propto T^4$ until $T \lesssim T_{\rm rh}$, then $H \propto T^2$.

Axion abundance in LTR

- * Higher $T_{\rm F}$ means higher initial equilibrium abundance
- Entropy generation
 dramatically suppresses
 abundances

New constraints

If $T_{\rm rh} \leq 35 \,\,{\rm MeV}$, $\lambda_{\rm fs} \leq \lambda_{\rm nl}$, LSS constraints completely relaxed

* $\lambda_{\rm fs} (T_{\rm rh}, m_{\rm a}) \& \Omega_{\rm a} h^2 (T_{\rm rh}, m_{\rm a})$ calculated to trace out allowed region

If $m_{\rm a}\gtrsim 23~{\rm eV}$, no LSS constraint to 'hot axions'

Standard constraints recovered if $T_{\rm rh} \gtrsim 170 \,\,{\rm MeV}$

26

Axionic contribution to pre-BBN radiation energy density in LTR

- * Axions are relativistic at T~ 1 MeV and contribute to N_{ν}^{eff}
- * Entropy generation suppresses the axionic contribution to N_{ν}^{eff}

Future limits from abundance of ⁴He

- * N_{ν}^{eff} contributes to H(T)during radiation domination, setting the abundance of ⁴He
- * Current measurements yield constraint $N_{\nu}^{\text{eff}} \leq 3.8$
- * ⁴He affects CMB TT, TE, and EE spectra: CMBPOL constraints!

Future surveys

- * LSST predicted to reach $\Delta P/P \sim 10^{-2}$ for a sample population similar to SDSS main
- * Assuming 21-cm or Lyα observations on very small comoving scales, limits at low reheating temperatures may be improved

Cosmological Hydrogen Recombination: The effect of high-n states

Daniel Grin in collaboration with Christopher M. Hirata

OUTLINE

- * Motivation: CMB anisotropies and recombination spectra
- * Recombination in a nutshell
- * Breaking the Peebles/RecFAST mold
- * **RecSparse**: a new tool for high-n states
- * Forbidden transitions
- * Results
- * Ongoing/future work

CLONE WARS

- * Planck (launched May 2009) will make cosmic-variance limited CMB anisotropy measurements up to 1~2500 (T), and 1~1500 (E)
- Wong 2007 and Lewis 2006 show that x_e(z) needs to be predicted to several parts in 10⁴ accuracy for Planck data analysis

CMB ANISOTROPIES EPISODE II ATTACK OF THE CONES

CMB ANISOTRPOIES EPISODE II ATTACK OF THE POWER SPECTRUM ONES MATIAS ZALDARRIAGA UROS SELJAK CHUNG-PEI MA WAYNE HU STEVEN WEINBERG MAX TEGMARK EDMUND BERTSCHINGER and NAOSHI SUGIYAMA PRODUCED BY KRIS STANEK and MATIAS ZALDARIAGGA DIRECTED BY ANDREW FRIEDMAN, HARVARD UNIVERSITY, SPRING 2003

 $= (4\pi)^2 \int k^2 dk P_{\alpha}(k) [\Delta_{TT}^{(0)}(k, \tau = \tau_{0})]^{0}$

RECOMBINATION, INFLATION, AND REIONIZATION

* Planck uncertainty forecasts using MCMC

- Cosmological parameter inferences will be off if recombination is improperly modeled (Wong/Moss/Scott 2007)
- * Leverage on new physics comes from high I. Here the details of recombination matter!
- * Inferences about inflation will be wrong if recombination is improperly modeled

$$\mathbf{n}_s = 1 - 4\epsilon + 2\eta \qquad \epsilon = \frac{m_{\rm pl}^2}{16\pi} \left[\frac{V'(\phi)}{V(\phi)} \right]^2$$

CAVEAT EMPTOR:

Need to do eV physics right to infer anything about 10¹⁵ GeV physics!33

RECOMBINATION, INFLATION, AND REIONIZATION

* Planck uncertainty forecasts using MCMC

- Cosmological parameter inferences will be off if recombination is improperly modeled (Wong/Moss/Scott 2007)
- * Leverage on new physics comes from high I. Here the details of recombination matter!
- * Inferences about inflation will be wrong if recombination is improperly modeled

$$n_{s} = 1 - 4\epsilon + 2\eta \qquad \epsilon = \frac{m_{pl}^{2}}{16\pi} \left[\frac{V'(\phi)}{V(\phi)} \right]^{2} \qquad A_{s}^{2} = \left. \frac{32}{75} \frac{V}{m_{pl}^{4} \epsilon} \right|_{k_{pivot} = aH}$$
CAVEAT EMPTOR:
eed to do eV physics right to infer anything about 10¹⁵ GeV physics!

33

RECOMBINATION, INFLATION, AND REIONIZATION

* Planck uncertainty forecasts using MCMC

- Cosmological parameter inferences will be off if recombination is improperly modeled (Wong/Moss/Scott 2007)
- * Leverage on new physics comes from high I. Here the details of recombination matter!
- * Inferences about inflation will be wrong if recombination is improperly modeled

$$\mathbf{n}_s = 1 - 4\epsilon + 2\eta \qquad \epsilon = \frac{m_{\rm pl}^2}{16\pi} \left[\frac{V'(\phi)}{V(\phi)} \right]^2$$

CAVEAT EMPTOR:

Need to do eV physics right to infer anything about 10¹⁵ GeV physics!33

ORIGIN OF EFFECTS ON CMB TEMPERATURE

* Thompson scattering decouples during recombination: Visibility function! $g(\tau) = \dot{\tau}e^{-\tau}$

* Diffusion (Silk) damping scale set by

 $N = \eta / \lambda_{\rm C} \quad \lambda_c = (n_e \sigma_{\rm T} a)^{-1}$

 $\lambda_D \approx N^{1/2} \lambda_C$

$$\tau = \int_0^{\eta_{\text{dec}}} n_e \sigma_T a(\eta) d\eta$$

 $l_{\rm damp} \sim 1000$

* Relic $x_e(z)$ sets probability of re-scattering CMB photon through τ

 $C_l \to C_l e^{-2\tau(z)}$ if $l > \eta_{\rm dec}/\eta(z)$

* Duration of decoupling determines amt. of time available to develop a quadrupole and then re-scatter that quadrupole to polarize CMB
ORIGIN OF EFFECTS ON CMB TEMPERATURE

* Thompson scattering decouples during recombination: Visibility function! $g(\tau) = \dot{\tau}e^{-\tau}$

* Diffusion (Silk) damping scale set by

$N = \eta / \lambda_{C} \quad \lambda_{c} = (n_{e} \sigma_{T} a)^{-1}$

* Relic $x_e(z)$ sets probability of re-scattering CMB photon through τ

 $C_l \to C_l e^{-2\tau(z)}$ if $l > \eta_{\rm dec}/\eta(z)$

* Duration of decoupling determines amt. of time available to develop a quadrupole and then re-scatter that quadrupole to polarize CMB

 $\tau = \int_0^{\eta_{\text{dec}}} n_e \sigma_T a(\eta) d\eta$

SPECTRAL DISTORTIONS

* Deviations from perfect CMB blackbody due to recomb. lines could be detected someday

SAHA EQUILIBRIUM IS INADEQUATE

$$p + e^- \leftrightarrow H^{(n)} + \gamma^{(nc)}$$

* Chemical equilibrium does reasonably well predicting "moment of recombination"

$$\frac{x_e^2}{1 - x_e} = \left(\frac{13.6}{T_{\rm eV}}\right)^{3/2} e^{35.9 - 13.6/T_{\rm eV}}$$

$$x_e = 0.5$$
 when $T = T_{rec} \simeq 0.3$ eV $z_{rec} \simeq 1300$

*Further evolution falls prey to reaction freeze-out

 $\Gamma = 6 \times 10^{-22} \text{ eV } x_e (T) (13.6/T_{\text{eV}})^{-5/2} \ln (13.6/T_{\text{eV}})$ $H = 1.1 \times 10^{-26} \text{ eV } T_{\text{eV}}^{3/2}$

 $\Gamma < H$ when $T < T_{\rm F} \simeq 0.25$ eV

BOTTLENECKS/ESCAPE ROUTES

BOTTLENECKS

* Ground state recombinations are ineffective

$$\tau_{c \to 1s}^{-1} = 10^{-1} \text{ s}^{-1} \gg H \simeq 10^{-12} \text{ s}^{-1}$$

• Resonance photons are re-captured, e.g. Lyman α

$$\tau_{2p \to 1s}^{-1} = 10^{-2} \text{ s}^{-1} \gg H \simeq 10^{-12} \text{ s}^{-1}$$

• ESCAPE ROUTES (e.g. n=2)

- Two-photon processes $H^{2s} \rightarrow H^{1s} + \gamma + \gamma$ $\Lambda_{2s \rightarrow 1s} = 8.22 \text{ s}^{-1}$
- Redshifting off resonance $R \sim (n_{\rm H} \lambda_{\alpha}^3)^{-1} \left(\frac{a}{a}\right)^{-1}$

EQUILIBRIUM ASSUMPTIONS

* Radiative eq. between different n-states

$$\mathcal{N}_n = \mathcal{N}_2 e^{-(E_n - E_2)/T}$$

*Radiative/collisional eq. between different l

$$\mathcal{N}_{nl} = \mathcal{N}_n \frac{(2l+1)}{n^2}$$

*Matter in eq. with radiation due to Thompson scattering

38

$$T_m = T_\gamma \text{ since } \frac{\sigma_{\mathrm{T}} a T_\gamma^4 c}{m_e c^2} < H(T)$$

BREAKING THE MOLD

- * Radiation field is cool: Boltzmann eq. of higher n
- * Seager/Sasselov/Scott (2000) $n_{\text{max}} = 300$
- * Equilibrium between *l states*
- * Treated by Chluba et al. (2005) for $n_{\text{max}} = 100$
- * Radiation and matter field fall out of eq.

$$\dot{T_M} + 2HT_m = \frac{8x_e \sigma_{\mathrm{T}} a T_{\gamma}^4}{3m_e c \left(1 + f_{\mathrm{He}} + x_e\right)} \left(T_M - T_{\gamma}\right)$$

BREAKING THE MOLD

- * Radiation field is cool: Boltzmann eq. of higher n
- * Seager/Sasselov/Scott (2000) $n_{\text{max}} = 300$ RecFAST!!!
- * Equilibrium between *l states*
- * Treated by Chluba et al. (2005) for $n_{\text{max}} = 100$
- * Radiation and matter field fall out of eq.

$$\dot{T_M} + 2HT_m = \frac{8x_e \sigma_{\mathrm{T}} a T_{\gamma}^4}{3m_e c \left(1 + f_{\mathrm{He}} + x_e\right)} \left(T_M - T_{\gamma}\right)$$

BREAKING THE MOLD

- * Radiation field is cool: Boltzmann eq. of higher n
- * Seager/Sasselov/Scott (2000) $n_{\text{max}} = 300$ RecFAST!!!
- * Equilibrium between *l states*
- * Treated by Chluba et al. (2005) for $n_{\text{max}} = 100$
- * Radiation and matter field fall out of eq.

$$\dot{T_M} + 2HT_m = \frac{8x_e\sigma_{\mathrm{T}}aT_{\gamma}^4}{3m_ec\left(1 + f_{\mathrm{He}} + x_e\right)}\left(T_M - T_{\gamma}\right)$$

BREAKING THE SIMPLEST MODEL

- * Radiation field is cool: Boltzmann eq. of higher n
- * Treated by Seager et al. (2000)
- * Equilibrium between *l* states: $\Delta l = \pm 1$ bottleneck
- * Treated by Chluba et al. (2005) for $n_{\text{max}} = 100$
- * Beyond this, testing convergence with n_{\max} is hard!

 $t_{\rm compute} \sim \mathcal{O}(\text{weeks})$

How to proceed if we want 0.1% accuracy in $x_e(z)$?

* Bound-free rate equation (Rates from recursion, checked with WKB)
* Bound-bound rates (Rates from Gordon+recursion, checked with WKB)

$$\dot{x}_{nl}^{bb} = \sum_{n',l'=l\pm 1} \left(A_{nn'}^{ll'} \left(1 + f_{nn'} \right) x_{n',l'} - \frac{g_{n'l'}}{g_{nl}} f_{nn'} x_{nl} \right) P_{nn'}^{ll'}$$

Spontaneous

* Bound-free rate equation (Rates from recursion, checked with WKB) * Bound-bound rates (Rates from Gordon+recursion, checked with WKB) $\dot{x}_{nl}^{bb} = \sum_{n',l'=l\pm 1} (A_{nn'}^{ll'}(1+f_{nn'})x_{n',l'} - \frac{g_{n'l'}}{g_{nl}}f_{nn'}x_{nl}) P_{nn'}^{ll'}$

Stimulated

- * Bound-free rate equation (Rates from recursion, checked with WKB)
- * Bound-bound rates (Rates from Gordon+recursion, checked with WKB)

$$\dot{x}_{nl}^{bb} = \sum_{n',l'=l\pm 1} \left(A_{nn'}^{ll'} \left(1 + f_{nn'} \right) x_{n',l'} - \frac{g_{n'l'}}{g_{nl}} f_{nn'}^{*} x_{nl} \right) P_{nn'}^{ll'}$$

- * Bound-free rate equation (Rates from recursion, checked with WKB)
- * Bound-bound rates (Rates from Gordon+recursion, checked with WKB)

$$\dot{x}_{nl}^{bb} = \sum_{n',l'=l\pm 1} \left(A_{nn'}^{ll'} \left(1 + f_{nn'} \right) x_{n',l'} - \frac{g_{n'l'}}{g_{nl}} f_{nn'} x_{nl} \right) P_{nn'}^{ll'}$$

* Phase-space density blueward of line

* Escape probability of resonance photon

- * Two photon transitions between n=1 and n=2 are included: $\dot{x}_{2s \to 1s, 2\gamma} = -\dot{x}_{1s \to 2s, 2\gamma} = \Lambda_{2s}(-x_{2s} + x_{1s}e^{-E_{2s \to 1s}/T_{\gamma}})$
- * Net recombination rate:

$$x_e \simeq 1 - x_{1s} \to \dot{x}_e \simeq -\dot{x}_{1s} = -\dot{x}_{1s \to 2s} + \sum_{n,l>1s} A_{n1}^{l0} P_{n1}^{l0} \left\{ \frac{g_{nl}}{2} f_{n1}^+ x_{1s} - (1 + f_{n1}^+) x_{nl} \right\}$$

RADIATION FIELD: BLACK BODY +

* Escape probability treated in Sobolev approx.

$$P_{n,n'}^{l,l'} = \frac{1 - e^{-\tau_s}}{\tau_s} \qquad \tau_s = \frac{c^3 n_{\rm H}}{8\pi H \nu_{nn'}^3} A_{nn'}^{ll'} \left[\frac{g_{n'}^{l'} x_n^l - x_{n'}^{l'}}{g_n^l} \right]$$

$$\mathcal{R}(\nu,\nu') = \phi(\nu)\phi(\nu') \qquad \qquad \frac{v_{\rm th}}{H(z)} \ll \lambda$$

* Excess line photons injected into radiation field

$$\left(\frac{8\pi\nu_{nn'}^3}{c^3n_H}\right)\left(f_{nn'}^+ - f_{nn'}^-\right) = A_{nn'}^{ll'}P_{nn'}^{ll'}\left[x_n^l\left(1 + f_{nn'}^+\right) - \frac{g_n^l}{g_{n'}^{l'}}x_{n'}^{l'}f_{nn'}^+\right]$$

* Photons are conserved outside of line regions $f_{n1}^{+10} = f_{n+1,1}^{-10} \left[\frac{1 - (n+1)^{-2}}{1 - n^{-2}} (1+z) - 1 \right]$

RADIATION FIELD: BLACK BODY+

* Escape probability treated in Sobolev approx.

$$P_{n,n'}^{l,l'} = \frac{1 - e^{-\tau_s}}{\tau_s} \qquad \tau_s = \frac{c^3 n_{\rm H}}{8\pi H \nu_{nn'}^3} A_{nn'}^{ll'} \left[\frac{g_{n'}^{l'} x_n^l - x_{n'}^{l'}}{g_n^l} \right]$$

$$\mathcal{R}(\nu,\nu') = \phi(\nu)\phi(\nu')$$

• Ongoing work by collabs and others uses FP eqn. to obtain evolution of $f(\nu)$ more generally, including atomic recoil/diffusion, and full time-dependence of problem, coherent and incoherent scattering, overlap of higher-order Lyman lines, 2γ decay

* Evolution equations may be re-written in matrix form

$$\frac{d\vec{x}}{dt} = \mathbf{R}\vec{x} + \vec{s}$$

* Evolution equations may be re-written in matrix form

* Evolution equations may be re-written in matrix form

For state 1, includes BB transitions out of 1 to all other 1", photo-ionization, 2γ transitions to ground state

* Evolution equations may be re-written in matrix form

For state 1, includes BB transitions into 1 from all other 1'

* Evolution equations may be re-written in matrix form

$$\frac{d\vec{x}}{dt} = \mathbf{R}\vec{x} + \vec{s}$$

- Includes recombination to 1, 1 and 2γ transitions from ground state

* Evolution equations may be re-written in matrix form

45

$$\frac{d\vec{x}}{dt} = \mathbf{R}\vec{x} + \vec{s}$$

• For n>1,
$$t_{\text{rec}}^{-1} \sim 10^{-12} s^{-1} \ll \mathbf{R}$$
, $\vec{s} \to \vec{x} \simeq \mathbf{R}^{-1} \vec{s}$
 $\mathbf{R} \lesssim 1 \text{ s}^{-1}$ (e.g. Lyman- α)

RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

* Matrix is $\sim n_{max}^2 \times n_{max}^2$

- * Brute force would require $An_{max}^6 \sim 1000$ s for $n_{max} = 200$ for a single time step
- * Sparsity to the rescue: $\Delta l = \pm 1$

 $\mathbf{M}_{l,l-1}\vec{x}_{l-1} + \mathbf{M}_{l,l}\vec{x}_{l} + \mathbf{M}_{l,l+1}\vec{x}_{l+1} = \vec{s}_{l}$

$$\vec{v}_{l} = \chi_{\mathbf{l}} \left[\vec{s}_{l} - \mathbf{M}_{\mathbf{l},\mathbf{l+1}} \vec{v}_{l} + \Sigma_{l'=l-1}^{0} \sigma_{l,l'} \vec{s}_{l'} (-1)^{l'-l} \right]$$

$$\chi_{l} = \begin{cases} \mathbf{M}_{00}^{-1} & \text{if } l = 0 \\ (\mathbf{M}_{l+1,l+1} - \mathbf{M}_{l+1,l}\chi_{l}\mathbf{M}_{l,l+1})^{-1} & \text{if } l > 0 \end{cases} \quad \sigma_{l,l-1} = \mathbf{M}_{l,l-1}\chi_{l-1} \\ \sigma_{l,i} = \sigma_{l,i+1}\mathbf{M}_{i+1,i}\chi_{i} \end{cases}$$

* RecSparse generates rec. history with 10^{-8} precision, with computation time ~ $n_{max}^{2.5}$: Huge improvement!

* Case of $n_{\text{max}} = 100$ runs in a day, $n_{\text{max}} = 200$ takes ~ 1 week.

- * Higher-n 2γ transitions in H important at 7- σ for Planck (TT/EE) data analysis (Hirata 2008, Kholupenko 2006)
- * Some forbidden transitions are important in Helium recombination (Dubrovich 2005, Lewis 2006) and would bias cosmological parameter estimation.
- * Unfinished business: Are other forbidden transitions in hydrogen important, particularly for Planck data analysis?

QUADRUPOLE TRANSITIONS AND RECOMBINATION

* Electric quadrupole (E2) transitions are suppressed but conceivably not irrelevant at the desired level of accuracy:

$$\frac{A_{m,l\pm 2\to n,l}^{\text{quad}}}{A_{m,l\pm 1\to n,l}^{\text{dipole}}} \sim \alpha^2 \approx 5 \times 10^{-5}$$

* Coupling to ground state will overwhelmingly dominate:

$$\frac{A_{n,2\to1,0}^{\text{quad}}}{A_{n,2\to m,0}^{\text{quad}}} \propto \frac{\omega_{n1}^5}{\omega_{nm}^5} = \left(\frac{1-\frac{1}{n^2}}{\frac{1}{m^2}-\frac{1}{n^2}}\right)^5 \ge 1024 \text{ if } m \ge 2$$

* GS E2 lines are optically thick!

$$R \propto AP \propto A/\tau \rightarrow \text{ const if } \tau \gg 1$$

* Magnetic dipole rates suppressed by several more orders of magnitude

* Hirata, Switzer, Kholupenko, others have considered other `forbidden' processes, two-photon processes in H, E2 transitions in He

- * Lyman lines are optically thick, so $nd \to 1s$ immediately followed by $1s \to np$, so this can be treated as an effective $d \to p$ process with rate $A_{nd \to 1s} x_{nd}$.
- * Same sparsity pattern of rate matrix, similar to 1-changing collisions
- * Detailed balance yields net rate

$$\mathbf{e} \ R_{nd \to np}^{\text{quad}} = A_{nd \to 1s} \left(x_{nd} - \frac{5}{3} x_{np} \right)$$

DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

I-substates are highly out of Boltzmann eqb'm at late times

DEVIATIONS FROM BOLTZMANN EQUILIBRIUM: DIFFERENT N-SHELLS

51

DEVIATIONS FROM SAHA EQUILIBRIUM

- * n=1 suppressed due to freeze-out of x_e
- * Remaining levels 'try' to remain in Boltzmann eq. with n=2
- * Super-Boltz effects and two- γ transitions (n=1 \rightarrow n=2) yield less suppression for n>1
- * Effect larger at late times (low z) as rates fall

RESULTS: RECOMBINATION HISTORIES INCLUDING HIGH-N

* $x_e(z)$ falls with increasing $n_{\max} = 10 \rightarrow 200$, as expected.

* Rec Rate>downward BB Rate> Ionization, upward BB rate

* For $n_{max} = 100$, code computes in only 2 hours

RESULTS: TT $C_l s$ WITH HIGH-N STATES

RESULTS: EE $C_l s$ WITH HIGH-N STATES

RESULTS: RECOMBINATION WITH HYDROGEN

 $\Delta x_e \equiv x_e \big|_{\text{no } E2 \text{ transitions}} - x_e \big|_{\text{with } E2 \text{ transitions}}$

WRAPPING UP

- * RecSparse: a new tool for MLA recombination calculations (watch arXiv in coming weeks for a paper on these results)
 - Highly excited levels (n~150 and higher) are relevant for CMB data analysis
 - * E2 transitions in H are not relevant for CMB data analysis
- * To do: include collisions and line overlap in RecSparse
- * Full incorporation into CosmoMC and analysis of errors/degeneracies with cosmo. parameters

Subtleties

- * Non-equilibrium production
- * $T_{\rm F} \gtrsim 200 \,\,{
 m MeV}$ necessitates use of different cross sections
- * At low values of $m_{\rm a}$, coherent oscillation may become important
- * For very low $T_{\rm rh}$, ν may not have time to thermalize, and π may fall out of equilibrium
- * All these effects negligible for $T_{\rm rh} \gtrsim 10 \,\,{\rm MeV}$ and $m_{\rm a} \gtrsim 0.6 \,\,{\rm eV}$

Kination

* Kination refers to an epoch (typically pre-BBN) during which the universe's energy budget is dominated by the *kinetic* energy of a scalar field

$$\begin{split} T/V &= \dot{\phi}^2 / 2V \left(\phi \right) \gg 1 \to w = \frac{\dot{\phi}^2 / 2 - V(\phi)}{\dot{\phi}^2 / 2 + V(\phi)} \simeq 1 \\ \rho \propto a^{-3(1+w)} & H \propto T^3 \end{split}$$

- Kination may alleviate the challenges of EW baryogenesis and be relevant in quintessential inflation
- * No entropy generation during kination, so kination complements LTR
- * Analysis does not rely on details of kination models, general for models with $H = H_{rad} (T/T_{kin})$ until $T_{kin}, H = H_{rad}$ afterwards
- * Past work considered neutralino abundance in kination models. New work: LSS/CMB/ total density constraints to hot axions in kination models
New constraints

* In the case of kination, the new constraints are less dramatically different: If $T_{\rm kin} \simeq 10$ MeV, the allowed regions are $m_{\rm a} \lesssim 3.2$ eV and $17 \, {\rm eV} \lesssim m_{\rm a} \lesssim 26 \, {\rm eV}$. If $T_{\rm kin} \gtrsim 110$ MeV, standard results are recovered.

2 axion populations: Cold axions

* Before PQ symmetry breaking, θ is generically displaced from vacuum value

- * EOM: $\ddot{\theta} + 3H\bar{\theta} + m_{a}^{2}(T)\bar{\theta} = 0$ $m_{a}(T) \simeq 0.1m_{a}(T = 0)(\Lambda_{QCD}/T)^{3.7}$
- * After $m_{\rm a}(T) \gtrsim 3H(T)$, coherent oscillations begin, leading to $n_{\rm a} \propto a^{-3}$
- * Relic abundance $\Omega_a h^2 \simeq 0.13 \times g \left(\theta_0\right) \left(m_a/10^{-5} \text{eV}\right)^{-1.18}$
- * Particles are cold

Context: Axion constraints

Pitfalls of direct axion searches

Searches using non-vanishing nuclear couplings (resonant detection of solar axions using Fe, Kr, and Li) yielding first results
Other model independent constraints desirable

* Need to scatter quadrapole to polarize CMB $\Theta_{l}^{P}(k) = \int d\eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T,2}(k,\eta) \frac{l^{2}}{(k\eta)^{2}} j_{l}(k\eta)$

* Need time to develop a quadrapole

 $\Theta_l(k\eta) \sim \frac{k\eta}{2\tau} \Theta_l(k\eta) \ll \Theta_l(\eta)$ if $l \ge 2$, in tight coupling regime

ORIGIN OF EFFECTS ON CMB POLARIZATION

* Need to scatter quadrapole to polarize CMB $\Theta_{l}^{P}(k) = \int d\eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T,2}(k,\eta) \frac{l^{2}}{(k\eta)^{2}} j_{l}(k\eta)$

* Need time to develop a quadrapole

 $\Theta_l(k\eta) \sim \frac{k\eta}{2\tau} \Theta_l(k\eta) \ll \Theta_l(\eta)$ if $l \ge 2$, in tight coupling regime

ORIGIN OF EFFECTS ON CMB POLARIZATION

* Need to scatter quadrapole to polarize CMB $\Theta_{l}^{P}(k) = \int d\eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T,2}(k,\eta) \frac{l^{2}}{(k\eta)^{2}} j_{l}(k\eta)$

* Need time to develop a quadrapole

 $\Theta_l(k\eta) \sim \frac{k\eta}{2\tau} \Theta_l(k\eta) \ll \Theta_l(\eta)$ if $l \ge 2$, in tight coupling regime

results: cmb anisotropies with hydrogen quadrupoles, temperature (tt) $C_l s$

results: cmb anisotropies with hydrogen quadrupoles, temperature (tt) $C_l s$

