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OUTLINE

✴ Motivation: CMB anisotropies and recombination spectra

✴ Recombination in a nutshell

✴ Breaking the Peebles/RecFAST mold

✴ RecSparse: a new tool for high-n states

✴ Forbidden transitions

✴ Results

✴ Ongoing/future work
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WALK THE PLANCK

✴ Planck (launched May 2009) will make cosmic-variance limited CMB 
anisotropy measurements up to l~2500 (T), and l~1500 (E)

✴ Wong 2007 and Lewis 2006 show that            needs to be predicted to several 
parts in 104 accuracy for Planck data analysis
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✴ Inferences about inflation will be wrong if recombination is improperly modeled

✴ Cosmological parameter inferences will be off if recombination is improperly modeled 
(Wong/Moss/Scott 2007)

✴ Leverage on new physics comes from high l. Here the details of recombination matter!

RECOMBINATION, INFLATION, AND REIONIZATION

✴ Planck uncertainty forecasts using MCMC

Need to do eV physics right to infer anything about 1015 GeV physics!
CAVEAT EMPTOR:

44
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RECOMBINATION, INFLATION, AND REIONIZATION

✴ Planck uncertainty forecasts using MCMC

Need to do eV physics right to infer anything about 1015 GeV physics!
CAVEAT EMPTOR:
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Bad recombination history yields biased inferences about reionization
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✴                    :  Decoupling occurs during recombination

WHO CARES? 
SMEARING AND MOVING THE SURFACE OF LAST SCATTERING 

(SLS)

✴ Photons kin. decouple when Thompson scattering freezes out
γ + e− ⇔ γ + e−

zdec ! 1100

5

✴ Acoustic mode evolution influenced by visibility function
g = τ̇e−τ
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WHO CARES? 
THE SILK DAMPING TAIL

!D"N
1/2!C

N=#/!C

✴ Inhomogeneities are damped for λ <λ D

ldamp ∼ 1000
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WHO CARES? 
 CMB POLARIZATION

✴ Need to scatter quadrapole to polarize CMB

✴ Need time to develop a quadrapole
Θl (kη) ∼ kη

2τ
Θl (kη)" Θl (η) if l ≥ 2, in tight coupling regime

7

From Wayne Hu’s website
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WHO CARES?
SPECTRAL DISTORTIONS FROM RECOMBINATION
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✴ Chemical equilibrium does reasonably well 
predicting “moment of recombination”

SAHA EQUILIBRIUM IS INADEQUATE

p + e− ↔ H(n) + γ(nc)

✴Further evolution falls prey to reaction freeze-out

xe = 0.5 when T = Trec ! 0.3 eV

x2
e

1− xe
=

(
13.6
TeV

)3/2

e35.9−13.6/TeV

Γ < H when T < TF ! 0.25 eV

zrec ! 1300
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✴ Redshifting off resonance

✴ Two-photon processes

BOTTLENECKS/ESCAPE ROUTES

✴ Ground state recombinations are ineffective

✴Resonance photons are re-captured, e.g. Lyman 

BOTTLENECKS

ESCAPE ROUTES (e.g. n=2)

α

τ−1
c→1s = 10−1 s−1 ! H " 10−12 s−1
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✴Net Rate is suppressed by bottleneck vs. escape factor

THE PEEBLES PUNCHLINE

✴ Only n=2 bottlenecks are treated

11

−dxe

dt
= S

∑

n,l>1s

αnl (T )
{
nx2

e − x1sB(T )
}
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THE PEEBLES MODEL

✴Net Rate is suppressed by bottleneck vs. escape factor
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Redshifting term

THE PEEBLES MODEL

✴Net Rate is suppressed by bottleneck vs. escape factor
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Ionization Term

THE PEEBLES MODEL

✴Net Rate is suppressed by bottleneck vs. escape factor
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Ionization Term

THE PEEBLES MODEL

✴Net Rate is suppressed by bottleneck vs. escape factor

redshift term
2γ term

! 0.02
Ω1/2

m

(1− xe [z])
(

1+z
1100

)3/2

2γ process dominates until late times (z ! 850)

Ωm
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Ωbh2
Ωmh2

✴ Peebles 1967: State of the Art for 30 years!

THE PEEBLES MODEL

13
13Friday, November 6, 2009



EQUILIBRIUM ASSUMPTIONS 

✴ Radiative eq. between different n-states

✴Radiative/collisional eq. between different l

✴Matter in eq. with radiation due to Thompson scattering

Tm = Tγ since σTaT 4
γ c

mec2 < H(T )

Nn =
∑

l

Nnl = N2e
−(En−E2)/T
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EQUILIBRIUM ASSUMPTIONS 

✴ Radiative eq. between different n-states

✴Radiative/collisional eq. between different l

✴Matter in eq. with radiation due to Thompson scattering

Tm = Tγ since σTaT 4
γ c

mec2 < H(T )

Nn =
∑

l

Nnl = N2e
−(En−E2)/T

Seager/Scott/Sasselov 2000/RECFAST!

Non-eq rate equations
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BREAKING EQUILIBRIUM

15

✴ Equilibrium between l states:                 bottleneck

✴ Beyond this, testing convergence with           is hard!

✴ Chluba et al. (2005,6) follow l, n separately, get to nmax = 100

nmax

How to proceed if we want 0.01% accuracy in             ?xe(z)

✴ 0.1 %-level corrections to CMB anisotropies at nmax = 100
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THESE ARE REAL STATES

✴ Still inside plasma shielding length for n<100000

✴ JIIJOIIJOIJ

✴ addaedaed

✴ Similarly high n are seen in emission line nebulae

16
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THE EFFECT OF RESOLVING  L- SUBSTATES 

✴ ‘Bottlenecked’ l-substates decay slowly to 1s: Recombination is slower; Chluba al. 2006

l

17
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RECSPARSE AND THE MULTI-LEVEL ATOM

✴ We implement a multi-level atom computation in a new code, RecSparse!

✴ Bound-bound rates evaluated using Gordon (1929) formula and verified using WKB 

✴ Bound-free rates tabulated and integrated at each

✴ Boltzmann eq. solved for 18
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THE MULTI-LEVEL ATOM (MLA)

✴ Two photon transitions between n=1 and n=2 are included:

✴ Net recombination rate:
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2s-1s decay rate

THE MULTI-LEVEL ATOM (MLA)

✴ Two photon transitions between n=1 and n=2 are included:

✴ Net recombination rate:
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THE MULTI-LEVEL ATOM (MLA)

✴ Two photon transitions between n=1 and n=2 are included:

✴ Net recombination rate:

19

Einstein coeff.
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THE MULTI-LEVEL ATOM (MLA)

✴ Two photon transitions between n=1 and n=2 are included:

✴ Net recombination rate:

19

Occ. number blueward of line
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THE MULTI-LEVEL ATOM (MLA)

✴ Two photon transitions between n=1 and n=2 are included:

✴ Net recombination rate:

19
Escape probability
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THE MULTI-LEVEL ATOM (MLA)

✴ Two photon transitions between n=1 and n=2 are included:

✴ Net recombination rate:

19
Lyman series current to ground state
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RADIATION FIELD: BLACK BODY +
✴ Escape probability treated in Sobolev approx.

P l,l′

n,n′ =
1− e−τs

τs

✴ Excess line photons injected into radiation field

R(ν, ν′) = φ(ν)φ(ν′) vth

H(z)
! λ

20

✴ Ongoing work by collabs and others uses FP eqn. to obtain evolution of                  
ssef  more generally, including:

✴ Atomic recoil/diffusion, 

✴ Time-dependence of problem, 

✴ Coherent scattering,

✴ Overlap of higher-order Lyman lines,                             Analytic corr. to Sobolev, soon to be in RecSparse

✴ Higher

✴ Ultimate goal is to combine all new atomic physics effect in one 
fast recombination code
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✴ Evolution equations may be re-written in matrix form

STEADY-STATE FOR EXCITED LEVELS
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✴ Evolution equations may be re-written in matrix form

For state l, includes BB transitions out of l to all other l’’, 
photo-ionization, 

On diag
onal

2γ transitions to ground state

STEADY-STATE FOR EXCITED LEVELS
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✴ Evolution equations may be re-written in matrix form

For state l, includes BB transitions into l from all other l’

Off d
iag

onal

STEADY-STATE FOR EXCITED LEVELS
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✴ Evolution equations may be re-written in matrix form

Includes recombination to l, 
1 and 2γ transitions from ground state

STEADY-STATE FOR EXCITED LEVELS
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✴ Evolution equations may be re-written in matrix form

STEADY-STATE FOR EXCITED LEVELS

21

For n>1, 
R ! 1 s−1 (e.g. Lyman-α)
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✴ Physics imposes sparseness on the problem. Solved in closed form to yield 
algebraic          , then 

RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

✴ Matrix is  

✴ Brute force would require A             
for a single time step 

✴ Dipole selection rules:

n6
max

∼ n2
max × n2

max

22
23
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RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

✴ RecSparse generates rec. history with 10-8 precision, with computation       
time ~ nmax2.5: Huge improvement!

✴ Case of                       runs in less than a day,                      takes ~ 4 days.

✴ Einstein coefficients to states with                                             : more later!

23
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FORBIDDEN TRANSITIONS AND RECOMBINATION

✴ Higher-n       transitions in H important at 7-    for Planck (TT/EE) data 
analysis (Hirata 2008, Kholupenko 2006)

✴ Some forbidden transitions are important in Helium recombination 
(Dubrovich 2005, Lewis 2006) and would bias cosmological parameter 
estimation.

✴ Unfinished business: Are other forbidden transi0ons in hydrogen 
important, par0cularly for Planck data analysis?
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QUADRUPOLE   TRANSITIONS AND 
RECOMBINATION

✴ Coupling to ground state will overwhelmingly dominate:

✴ Magnetic dipole rates suppressed by several more orders of magnitude

✴ Hirata, Switzer, Kholupenko, others have considered other `forbidden’ 
processes, two-photon processes in H, E2 transitions in He

✴ Ground-state electric quadrupole (E2) lines are optically thick!
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✴ Same sparsity pattern of rate matrix, similar to l-changing collisions

✴ Detailed balance yields net rate

✴ Lyman lines are optically thick, so 

QUADRUPOLE TRANSITIONS AND RECOMBINATION

26

✴ Rates obtained using algebra of Coulomb w.f. (Hey 1995) and checked with 
WKB
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RESULTS: STATE OF THE GAS
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES
RecSparse 

output

28
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES
RecSparse 

output

28

Lower l states can easily cascade down, 
and are relatively under-populated
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES
RecSparse 

output

28

l=0 can’t cascade down, so s states are not as under-populated

28Friday, November 6, 2009



DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES
RecSparse 

output

28

Higher l are bottlenecked by               (over-pop) 
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES
RecSparse 

output

28

Highest l states recombine inefficiently, and are under-populated

0 0.2 0.4 0.6 0.8 1
l / lmax

10-3

10-2

10-1

100

l m
ax

 ×
 α

nl
 /
α

n,
to

t

n  = 10
n  = 20
n  = 40
n  = 60
n  = 80
n  = 100

n
= 80

n
= 40

n = 10

z = 1300

no induced recom
bination

Kramers’ approximation

n = 100

~ 2 l / lmax

~ n-2

Chluba/Rubino-Martin/Sunyaev 2006
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES
RecSparse 

output

28

l-substates are highly out of Boltzmann eqb’m at late times
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DEVIATIONS FROM BOLTZMANN EQ:  L-SUBSTATES
RecSparse 

output

28

Why the feature at l=2?
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WHAT IS THE ORIGIN OF THE L=2 DIP?

✴ l=2 depopulates more rapidly than l=1 for higher (n>2) excited states

✴ We can test if this explains the dip at l=2 by running the code with 
these Balmer transitions  the blip should move to l=1

29
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Dip moves as expected when Balmer lines are off!

L-SUBSTATE POPULATIONS, BALMER LINES OFF

30
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ATOMIC COLLISIONS

✴ l-changing collisions bring l-substates closer to statistical equilibrium (SE)

✴ Being closer to SE speeds up rec. by mitigating high-l bottleneck (Chluba, Rubino Martin, Sunyaev 2006)

✴ Theoretical collision rates unknown to factors of 2!

✴ dddawwdadwaw

✴ Next we’ll include them to see if we need to model rates better

0 5 10 15 20 25 30
l  (angular momentum quantum number)

-0.2

-0.15

-0.1

-0.05

0

Δ
N nl

 / 
N

nl
  i

n 
%

no collisions
with collisions

31 40 50 60 70 80 90 99
l

0

0.01

0.02

Δ
N

nl
 / 

N nl
  i

n 
%

z  = 1200, n = 100
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DEVIATIONS FROM BOLTZMANN EQUILIBRIUM: 
DIFFERENT N-SHELLS

32

✴ No inversion relative to n=2 (just-over 
population)

✴ Population inversion seen between some 
excited states: Does radiation stay coherent? 
Does recombination mase? Stay tuned

✴ Dense regions may mase more efficiently: 
maser spots as probe of l.s.s at early times? 
(Spaans and Norman 1997) 
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DEVIATIONS FROM SAHA EQUILIBRIUM

✴ n=1 suppressed due to freeze-out of 

✴ Remaining levels ‘try’ to remain in Boltzmann eq. with n=2

✴ Super-Boltz effects and two-     transitions (n=1      n=2) yield less suppression for n>1

✴ Effect larger at late times (low z) as rates fall

HUGE DEVIATIONS FROM SAHA EQ!

3334
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33

✴ Effect of states with n> could be approximated using asymptotic Einstein coeffs. 
and Saha eq. populations: but Saha is more elusive at high n/late times. 

✴ At z=200, we estimate nmax~1000 needed, unless collisions included

34
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RESULTS: RECOMBINATION HISTORIES

34
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RESULTS: RECOMBINATION HISTORIES INCLUDING HIGH-N 

✴           falls with increasing                             , as expected.

✴ Rec Rate>downward BB Rate> Ionization, upward BB rate

✴ For                      , code computes in only 2 hours
35
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✴ Relative convergence is not the same thing as absolute convergence: Want to see Saha asymptote and impose 
well-motivated cutoff!

✴ Collisions could help

✴ These are lower limits to the actual error

✴ nmax=250 and nmax=300 under way to further test convergence (more time consuming)
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RESULTS: RECOMBINATION WITH HYDROGEN 

nmax
nmax

Negligible for Planck!
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BUILDING INTUITION FOR THE EFFECT OF E2 TRANSITIONS

3737
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BUILDING INTUITION FOR THE EFFECT OF E2 TRANSITIONS

3737
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Super-horizon scales don’t care about recombination

            RESULTS: TT          WITH HIGH-N STATES Cls

38

Sample variance for Planck
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Sample variance for Planck

            RESULTS: EE          WITH HIGH-N STATES Cls
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RESULTS: TEMPERATURE (TT)        WITH HYDROGEN QUADRUPOLES, 

40

TT

Cls
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RESULTS: TEMPERATURE (TT)        WITH HYDROGEN QUADRUPOLES, 

40

TT

Cls

Overall effect is 
negligible for CMB 
experiments!
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RESULTS: POLARIZATION (EE)        WITH HYDROGEN QUADRUPOLES Cls

EE
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Overall effect is 
negligible for upcoming 
CMB experiments!

RESULTS: POLARIZATION (EE)        WITH HYDROGEN QUADRUPOLES Cls

EE

41
41Friday, November 6, 2009



CONVERGENCE

✴ Relative error well described by power law at high

✴ Can extrapolate to absolute error
42
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THE UPSHOT FOR COSMOLOGY
✴ Can explore effect on overall Planck likelihood analysis

✴ Parameter biases can be estimated in Fisher formalism
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WRAPPING UP

✴ RecSparse: a new tool for MLA recombination calculations 
(watch arXiv in coming weeks for a paper on these results)

✴ Highly excited levels (n~64 and higher) are relevant for CMB 
data analysis 

✴ E2 transitions in H are not relevant for CMB data analysis

✴ Future work:
✴ Include line-overlap

✴ Develop cutoff method for excluded levels

✴ Generalize RecSparse to calc. rec. line. spectra

✴ Compute and include collisional rates

✴ Monte-Carlo analyses 

✴ Cosmological masers (homogeneous and perturbed) 44
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Bound-free rates
✴ Using continuum wave functions, bound-free rates are obtained (Burgess 

1957)

✴ Bound-free matrix elements satisfy a convenient recursion relation:
 Matrix elements compared with Burgess 1965 (5 digits) and with WKB 
approximation (5%):

At each temperature, thermal recombination/ionization rates obtained using 11-
point Newton-Cotes formula, agreement with Burgess to 4 published digits
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BB Rate coefficients: verification

WKB estimate of matrix elements ρ(n′l′, nl) = a0n
2

∫ π

−π
dτeiΩτ (1 + cosη)

Ω = ωn − ωn′

r = rmax (1 + cos η) /2
τ = η + sin η

Radial matrix elements checked against WKB (10%), published rates of 
Brocklehurst (1971), Green, Rush, and Chandler (1967) (agreement to 
their published 4 digits)

Fourier transform of classical orbit! 
Application of correspondence 
principle!
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Quadrupole rates: basic formalism

✴ jijioj

Reduced matrix element evaluated using Wigner 3J symbols:

Radial matrix element evaluated using operator methods
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Quadrapole rates: Operator algebra

✴ Radial Schrödinger equation can be factored to 
yield:

This algebra can be applied to radial matrix elements:

48
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Quadrapole rates: Operator algebra

✴ Radial Schrödinger equation can be factored to 
yield:

This algebra can be applied to radial matrix elements:

Diagonal!
48
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Quadrapole rates: Operator algebra

✴ Radial Schrödinger equation can be factored to 
yield:

This algebra can be applied to radial matrix elements:

Off-diagonal! 48
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