

COSMOLOGICAL HYDROGEN RECOMBINATION: THE EFFECT OF HIGH-N STATES Daniel Grin in collaboration with Chris Hirata Caltech

Irvine TASC meeting, 10/24/08

the second state of the second

7/9

- Cosmological Recombination in a nutshell
- Breaking the naive model
- Why should you care? Effects on CMB, inferences about primordial physics
- Our tools
- Preliminary results!

Cosmological Recombination in A NUTSHELL

• $p + e^- \leftrightarrow H^{(n)} + \gamma^{(nc)}$ outrun by Hubble expansion, Saha Eq. fails: **Relic free electrons!**

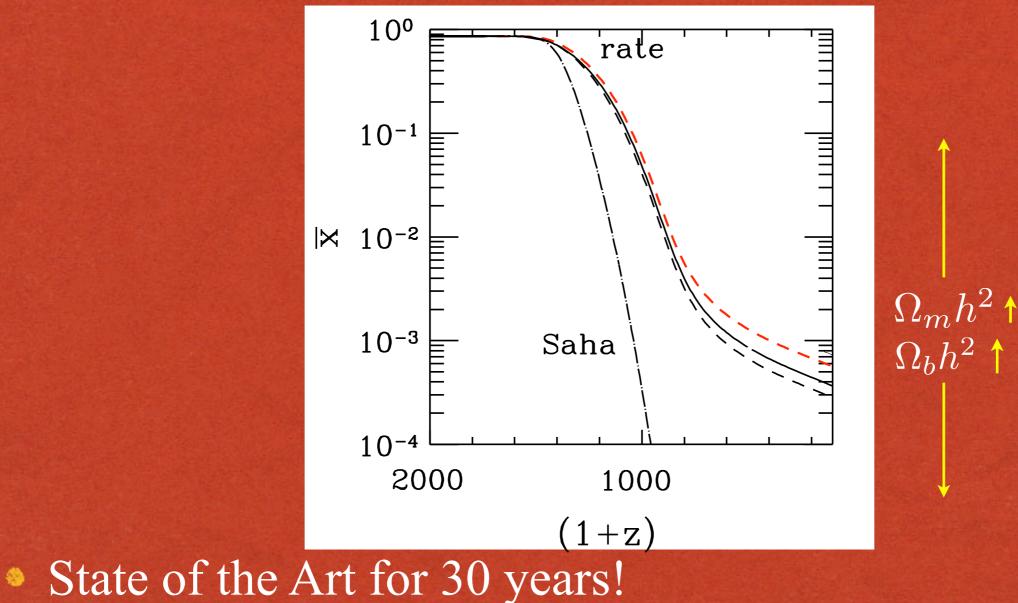
• For continuum $\rightarrow 1$ s, $2p \rightarrow 1s$, $t_{mf} < H^{-1}(T)$

• Two ways out of n = 2 bottleneck

• Two-photon decays: $H^{2s} \to H^{1s} + \gamma + \gamma$ $\Lambda_{2s \to 1s} = 8.22 \text{ s}^{-1}$

 $\mathcal{N}_{nl} = \mathcal{N}_n \frac{2}{2}$

• Redshifting out of resonance: $R \sim \lambda_{\alpha}^{-3} (\dot{a}/a) n_{1s}^{-1}$


Peebles (1967) assumes radiative eq. between n=2 and excited states, and between eq. between *angular momentum (l)* substates

$$\mathcal{N}_n = \mathcal{N}_2 e^{-(E_n - E_2)/T}$$

PEEBLES MODEL ASSUMPTIONS/RESULTS

4/9

Blackbody spectrum of radiation assumed

 $\Omega_b h^2$

BREAKING THE NAIVE MODEL

and the second second and the second second

- Equilibrium between *l states* (z<900)</p>
- Cool radiation field: Boltzmann eq. of higher n (z<900)</p>
- Radiation field is non-thermal
- Compton scattering inefficient $T_{\rm m} \neq T_{\gamma}$ (z<500)
- Higher level 2γ transitions (Hirata 2008) (z<800)
- Lyman- α diffusion

BREAKING THE NAIVE MODEL

- Radiation field is cool: Boltzmann eq. of higher n
 - Treated by Seager et al. $(2000) n_{max} = 300$ RecFAST!!!
- Equilibrium between *l states*
- Treated by Chluba et al. (2005) for $n_{\text{max}} = 100$

• Beyond this, testing convergence with n_{\max} is hard! $t_{\text{compute}} \sim \mathcal{O}(\text{weeks})$

How to proceed if we want 0.1% accuracy in $x_e(z)$?

BREAKING THE NAIVE MODEL

- Radiation field is cool: Boltzmann eq. of higher n
 - Treated by Seager et al. (2000) $n_{\text{max}} = 300$ RecFAST!!!
- Eq. between *l states*: dipole selection bottleneck: $\Delta l = \pm 1$
- Treated by Chluba et al. (2005) for $n_{\rm max} = 100$
- Beyond this, testing convergence with n_{\max} is hard! $t_{\text{compute}} \sim \mathcal{O}(\text{weeks})$

WHY PROCEED?

RECOMBINATION AND THE CMB 6/9

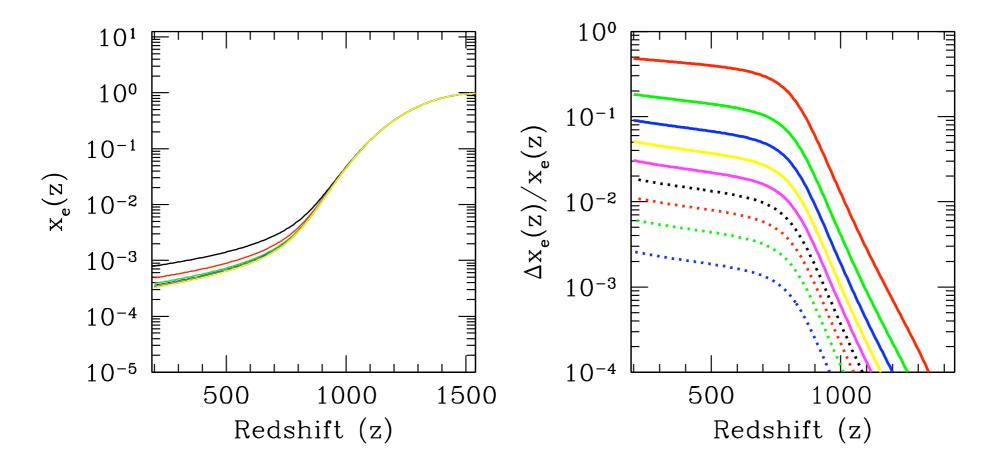
- γe^- decouple at $z_{dec} \simeq 1090$, during recombination
- If $\Delta z_{\rm rec}$ \uparrow , γ have more time to diffusively (Silk) damp C_l
- If $\Delta z_{\rm rec}$ \uparrow , low- λ modes cancel more along l.o.s.
- Polarization $\Pi \propto \Theta_2(\eta), \Theta_2(\eta)$ until $g \sim 1$, so $\Delta z_{\text{rec}} \uparrow \rightarrow \Pi \uparrow$
- Modes with $\lambda < H^{-1}(\eta)$ suppressed : $C_l \to C_l e^{-2\tau}$
- Planck will be CV limited out to l ~ 2500:
 Possible degeneracies between cosmo parameters (e.g. n_s) and atomic physics!

THE MULTI-LEVEL ATOM

- Bound-free rates (Hummer and Storey 1965)
 - Bound-bound rates (Hummer and Storey 1965)
- Solve for escape fraction of lines with Sobolev approx
 Add line photons and follow evolution of f(E_γ, T)

7/9

SPEEDING IT UP


• Excited state populations obey $\frac{d\vec{x}}{dt} = \mathbf{R}\vec{x} + \vec{s}$

• Rate on LHS is $t_{\rm rec}^{-1} \sim 10^{-12} s^{-1} \ll \mathbf{R} \ , \vec{s} \to \vec{x} \simeq \mathbf{R}^{-1} \vec{s}$

- Steady state approximation good for n>1.
- Matrix is $\sim n_{max}^2 \times n_{max}^2$
- Brute force would require for $n_{max}^6 \sim 1000$ s for $n_{max} = 200$ for a single time step
- Sparsity to the rescue $\mathbf{M}_{l,l-1}\vec{x}_{l-1} + \mathbf{M}_{l,l}\vec{x}_{l} + \mathbf{M}_{l,l+1}\vec{x}_{l+1} = \vec{s}_{l}$

8/9

PRELIMINARY RESULTS

x_e(z) falls with increasing n_{max} = 10 → 100, as expected:
Rec Rate>downward BB Rate> Ionization, upward BB rate
Even for n_{max} = 100, code computes in only 2 hours
To add: Spectral distortions, collisional rates, increase n_{max}