
“Tidal disruption of globular clusters in dwarf 
galaxies with triaxial dark matter haloes.”

by J. Peñarrubia, M.J. Walker, and G. Gilmore
University of Cambridge and University of Victoria

MNRAS accepted

Journal Club 5/15/09
Daniel Grin 1/19

1Wednesday, September 2, 2009



Punchline

• Globular clusters (GCs) around dwarf spheroidal (dSph) galaxies may 
survive tidal encounters

• Stellar substructure (morphology and kinematics) in dSph galaxies may be 
explained by past disruptions of  GCs

• Simulation techniques grossly over-simplify the problem, but useful first step
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Outline

• Motivation: subtructure in dSphs and existence of GCs near them.

• Properties of systems modeled 

• Simulation techniques/caveats

• Results
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• dSph galaxies have substructure, contrary to expectation that it should be erased in a few crossing 
times (~100 Myr):

• Morphology: Kinematically cold core in Sextans, kinematically distinct shell in 
Fornax, asymmetries across major/minor axes in Fornax (claims of butterfly shapes are 
sketchy)

• Ages: 2 Gyr-old stellar populations in Fornax shell

• Can prolong life of stellar substructure with cored density profile, challenge to CDM?

• Can save CDM with formation of substructure that is not in situ

Motivation: Substructure in dSph galaxies

• Milky Way (MW) dSph galaxies are DM dominated--                                                 :                                         

• Ideal testbed for CDM scenario

• Standing dispute about presence of cores (triaxiality? projection effect? see work by J. 
Simon)

• Blue stragglers in Sextans are mass segregated, not enough time for this in Sextans, do 
it elsewhere (like a merging G.C.) and disrupt?
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• Sinking time due to dynamical friction (DF) of order several giga-years: 
GC are not naturally expected where they’re found

Motivation: Globular clusters in dSph
• Fornax (5) and Sagitarrius (4) contain GCs near        :

• Undesirable explanations: CDM is wrong (cored halos) (Goerdt et al. 2006), tidal 
heating by MW pushes GCs out

• Worth asking: Will CDM dwarves generically destroy pre-existing GCs, or is their 
absence artefact of formation process?

• Could tidal disruption of GCs explain kinematic/morphological irregularities/excess 
surface brightness in MW dSphs?

Name Angular sep. [ Fe/H ] R c R t log10 (L ) log 10 [ρ? (0)]
()cp()cp()cpk( L ? ) ( M ? /pc 3 )

For dSph 0.00 − 1.3 400 ± 4 2078 ± 20 7.13 ± 0.2 − 1.14 ± 0.20

F1 1.60 − 2.25 10 .0 ± 0.3 60 ± 20 4.07 ± 0.13 0.48 ± 0.07
F2 1.05 − 1.65 5.8 ± 0.2 76 ± 18 4.76 ± 0.12 1.78 ± 0.07
F3 0.43 − 2.25 1.6 ± 0.6 63 ± 15 5.06 ± 0.12 3.47 ± 0.07
F4 0.24 − 1.65 1.8 ± 0.2 44 ± 10 4.69 ± 0.24 3.18 ± 0.07
F5 1.43 − 2.25 1.4 ± 0.1 50 ± 12 4.76 ± 0.20 3.27 ± 0.07

Sgr dSph 0.00 [ − 0.5, − 1.3] 1560 ± 20 12600 ± 20 7.24 ± 0.2 − 2.96 ± 0.20

M54 0.00 − 1.65 0.91 ± 0.04 59 ± 21 5.36 ± 0.08 4.45 ± 0.05
Terzan 7 2.68 − 0.64 1.63 ± 0.12 23 ± 8 3.50 ± 0.10 1.97 ± 0.07
Terzan 8 4.40 − 2.25 9.50 ± 0.72 66 ± 26 3.67 ± 0.14 0.72 ± 0.23
Arp 2 3.07 − 1.65 13 .67 ± 1.85 139 ± 49 3.59 ± 0.14 0.35 ± 0.25
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4 Peñarrubia, Walker & Gilmore

Figure 1. Density profiles of the five GCs in Fornax (F1,...,F5)
and of the underlying dark matter halo. The halo of the For-
nax dSph is assumed to follow an NFW profile with Vmax ! 20
km/s. For comparison we also plot the density profiles of halos
with Vmax = 10 km/s and 40 km/s, which represent the approx-
imate range of maximum circular velocities of the Local Group
dSphs (Peñarrubia et al. 2008b). We distinguish three categories
of clusters: Those with central densities higher (F3, F4 and F5),
comparable (F2) and lower (F1) than that of the dark matter
halo at r ∼ Rc.

spacing of dx1 = 10Rc/62 ! 0.16Rc and is meant to re-
solve the entire Globular Cluster. (ii) The middle grid ex-
tends to intermediate distances with a resolution of dx2 =
100Rc/62 ! 1.6Rc. (iii) The outermost grid extends out to
250 kpc and is meant to follow particles that are stripped
from the cluster and subsequently orbit within the main
galaxy.

In addition to the overall dSph potential, GCs feel dy-
namical friction as they orbit within the dSph’s extended
halo. To describe dynamical friction in aspherical haloes
we apply the equations of Binney (1977), which recover
the Chandrasekahr (1943) formula for a = b = c = 1.
Peñarrubia, Just & Kroupa (2004) test the accuracy of
these equations against self-consistent N-body simulations
and find that, for a large range of orbital parameters and
masses, the overall radial evolution of point-masses within
flattened dark matter haloes can be reproduced to within
a few percent. As the N-body simulations of Peñarrubia et
al. (2002) show, halo asphericity introduces a strong depen-
dence between the orbital decay time and the orientation
of the orbit with respect to the halo’s plane of symmetry.
In particular, these authors show that orbits that lie on the
major–intermediate axis plane have shorter decay times.

For simplicity we assume here that the velocity distri-
bution of the dark matter halo is Maxwellian and isotropic.
Kazantzidis et al. (2004a) have examined the inadequacies of
the local Maxwellian approximation when applied to NFW
haloes and, although it may introduce problems to gener-
ate haloes in perfect equilibrium, the deviations from Gaus-

sianity of the exact distribution function have a negligible
impact on the friction term (see their Fig. 4). Under these
approximations, the friction force per unit mass can be writ-
ten as (Binney 1977)

fdf = −2
√

2πGρNFW
v
σ3

BMGC lnΛ, (6)

where σ2(m) = ρ−1
NFW

R∞
m

dr′M(r′)ρNFW(r′)/r
′2 is the halo

velocity dispersion, B =
R∞
0

dτ exp[−v2/(1 + τ)/2σ2]/(1 +

τ)5/2 and MGC is the cluster’s bound mass. Peñarrubia et al.
(2004) find that the best fit to self-consistent N-body orbits
is obtained for a Coulomb logarithm lnΛ = 2.1, in good
agreement with the recent results of Arena & Bertin (2007).
However, it is well known that this quantity is fairly sensitive
to numerical aspects, such as particle number and spatial
resolution (e.g. Prugniel & Combes 1992, Wahde & Donner
1996) as well as to the host’s density profile (Hashimoto et
al. 2003, Just & Peñarrubia 2005, Read et al. 2006, Arena
& Bertin 2007). It is therefore necessary to note that the
decay times of clusters orbiting in dark matter haloes are
uncertain to a significant degree, since orbital decay rates
are proportional to the value assumed for lnΛ.

In order to implement eq. (6), we assume that only par-
ticles bound to the Globular Cluster feel dynamical friction,
whereas unbound (stripped) particles do not. In this way we
neglect effects that the density wake self-gravity may induce
on the trajectories of escaping particles.

After calculating the different force terms, Superbox
solves the equation of motion of each cluster particle

d2ri

dt2
= −∇ΦNFW(ri) + ξfdf(ri), (7)

where ξ = 1 for bound particles and ξ = 0 for unbound ones.
Superbox uses a leap-frog scheme with a constant

time-step to integrate the equations of motion for each par-
ticle. Each N-body realization is evolved a Hubble time
(tH =14 Gyr) in the NFW dwarf potential. We choose a
time step dt = tcr/25, where tcr is the cluster crossing time
defined as

tcr ≡ 2π
R3/2

c√
GMGC

. (8)

The crossing times of F1, F2 and F3 are, respectively, 15.7,
3.1 and 0.32 Myr, spanning a factor tcr,F1/tcr,F3 ! 50. Note
that the crossing time of the Fornax dwarf is tcr ! 230 Myr
assuming a dynamical mass of 107M$ and Rc = 400 pc, il-
lustrating the large range of time-scales that our simulations
must cover, since clusters evolve a factor 10–1000 faster than
the host galaxy. The total number of time-steps required to
simulate each of the clusters for a Hubble time is therefore
large, 1.5×104, 8.0×104 and 7.5×105 for the clusters F1, F2
and F3, respectively. We find that our choice of numerical
parameters leads to a total energy conservation better than
5% after the cluster models are evolved for a Hubble time
in isolation, which yields a negligible evolution of the initial
model parameters.

3.2 Relaxation processes in clusters

Superbox is a collision-less N-body code and therefore does
not account for a number of internal processes that take

c© 0000 RAS, MNRAS 000, 000–000

Monotonous dwarves and exciting clusters

• dSph relatively boring in density dist.

• Wide variety in GC densities

•   

•   

•   

• Criterion for tidal disruption is
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Tidal disruption of Globular Clusters in Dwarf Galaxies 5

place in clusters, such as mass loss due to stellar evolu-
tion, core collapse and the subsequent re-expansion due to
two-body relaxation processes. Whereas the evolution asso-
ciated with stellar evolution is significant only during the
early life of a cluster ( <∼ 1 Gyr after formation, Baumgardt
& Makino 2003), two-(and higher order)-body interactions
between stars may affect clusters during their entire evolu-
tion. A realistic incorporation of these effects into dynam-
ical simulations has proven to be a theoretical as well as a
numerical challenge due to the complexity of the problem
and the large range of time-scales involved (e.g. Aarseth &
Heggie 1998). Only in the last few years has the availabil-
ity of GRAPE special-purpose supercomputers provided the
necessary computational tools to simulate the evolution of
GCs with a number of particles N >∼ 105 (e.g. Baumgardt &
Makino 2003).

To estimate the importance of two-body relaxation pro-
cesses in the Fornax clusters we calculate first the relaxation
time as (Binney & Tremaine 2008, eq. 1.38)

trel ≈
N!

8 ln(N!γ)
tcr, (9)

where N! ≈ MGC/m and m is the mean stellar mass in a
cluster. A Kroupa (2001) mass function then implies m #
0.58M!.

Two-body interactions increase the strength of dynam-
ical friction. As a result, the values of the Coulomb loga-
rithm in multi-mass clusters are higher than those found
in collision-less systems. The factor γ in the Coulomb log-
arithm depends on the mass spectrum and is rather uncer-
tain for clusters. As an additional complication, the mass
spectrum changes during the dynamical evolution of a glob-
ular cluster (Baumgardt & Makino 2003). Here we adopt
the value found by Giersz & Heggie (1996), γ = 0.02. For
this choice of parameters, we estimate that the Fornax clus-
ters F1, F2 and F3 have relaxation times of trel # 14.6, 4.4
and 2.2 Gyr, respectively. Thus, only F1 has a relaxation
time trel >∼ tH , which suggests that stellar encounters have
played only a small role over its lifetime. Fornax’s other
clusters, however, have likely suffered repeated episodes of
core collapse and continuous mass dissolution (Hénon 1960).
In practice, this result implies that their present properties
have changed significantly since their formation and cannot
be extrapolated to several Gyr in the past.

4 MASS AND ORBITAL EVOLUTION OF
CLUSTERS IN DWARF GALAXIES

Two parameters govern the dynamical evolution of a gravi-
tationally bound system within a host galaxy: (i) the mean
density, which regulates the strength of external tides and
(ii) the cluster mass, which determines the amount of dy-
namical friction.

4.1 Mass vs density

In Fig. 2 we plot cluster mass against the mean density for
the nine GCs of Fornax and Sagittarius. The large range
of properties exhibited by these clusters suggests that tidal
forces and dynamical friction act with different strengths.
In particular, low-mass, low-density clusters, such as Arp 2,

Figure 2. Mean density 〈ρ!〉 ≡ MGC/(4πR3
t /3) versus stellar

mass for the GC population in the Fornax (filled symbols) and
Sagittarius (open symbols) dSphs. Massive, low-density clusters,
which experience the strongest dynamical friction and tidal mass
stripping, are absent in dwarf galaxies.

Ter 8 and F1, will suffer a small or negligible friction force,
but will respond heavily to tidal interactions with the host
galaxy. In contrast, owing to its high density and low mass,
Ter 7 will likely experience little dynamical evolution. At
high mass and high density, clusters F3, F4, F5 and M54
may suffer a strong orbital decay as a result of dynamical
friction. However, since these clusters are considerably more
dense than the underlying dark matter halo (see Fig 1), they
should be resilient to tidal mass stripping.

Despite the fact that the low-mass end of the For-
nax/Sagittarius GC distribution shows a remarkable dis-
persion in stellar densities (∼ 2.5 orders of magnitude), no
massive, low-density clusters are observed in these dSphs.
The absence of massive, low-density GCs may reflect pro-
cesses relevant to GC formation or, alternatively, may in-
dicate that such clusters have been disrupted by tides as
dynamical friction brought them close to the inner-most re-
gions of their host galaxies. If the latter scenario is correct,
the effects of dynamical friction and tidal stripping should
give rise to spatial segregation according to GC mass and
density. Specifically we expect surviving low-mass GCs to
populate the outskirts of their host halos, and we expect the
most massive GCs to have been dragged to the innermost
regions, where they can survive only if sufficiently dense.

4.2 Density vs projected position

Indeed, Fig. 3 shows that the Globular Clusters of For-
nax and Sagittarius exhibit a clear spatial segregation. Dots
show the estimated density of the underlying dark matter
halos and arrows indicate that the projected radius is the

c© 0000 RAS, MNRAS 000, 000–000

The density and masses of GC in dSph

• May fall to center of dSph due to DF

• May be tidally shredded if orbital apogee is  
close enough to dSph

• Absence could be explained by:

• GC formation process

• DF+tidal shredding:

• Massive, high density GC 
should live closer to dSph 
centers

• Light, low density GC should 
live near dSph outskirts

• Seems true for Fornax 
dwarves!

?
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This is a toy model!

• Stellar pops in Fornax GCs are metal-poor, coeval with stellar pops of 
GCs in MW

• Stellar pops in Fornax substructure are ~2 Gyr old

• Best thought of as a toy-model/gedanken-experiment:

• Can dense star clusters make their way to the center of dSph. 
to become nuclear star clusters? (double nuclei)

• Will GC like those found around Fornax generically survive, 
sink?

• Do disrupted GCs around dSphs leave detectable stellar 
debris?

8/19
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Toy halo/GC properties
• dSph dark matter assumed to be triaxial NFW halo with mean c(M):

9/19

• x/y/z: major/intermediate/minor axis. Axis ratios chosen to fit mean seen in simulation

• GC assumed to be best-fit King profile with parameters given in table

• dSph substructure can safely be ignored because it is further out than the GC (NOT 
because there is less substructure in dwarves than in host halo, e.g. Acquarius vs Via 
Lactea II conversation.)
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Computational method

• SUPERBOX Particle-mesh used to calculate GC star self-gravity,  
particles. 3 (near/intermediate/tidally stripped) overlaid grids of        cells 
each.

•       particles

10/19

105

• Smooth halo is unresolved, dynamical friction must be be put in by hand:

• Total force is due to smooth halo, particle-mesh (GC stars), and dynamical 
friction (bound stars only). Star positions are evolved.

10Wednesday, September 2, 2009



•  

Caveats 11/19

• Use of mesh method neglects close 2-body encounters, 
underestimates 

• Core collapse occurs after roughly                      : all but F1 would 
experience repeated episode of core collapse, energy injection by hard 
binaries, re-expansion, etc...

• Real dSph potentials are likely to evolve due to tidal forces in MW 
halo (more on this later)
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Tidal disruption of Globular Clusters in Dwarf Galaxies 7

Figure 5. Galactocentric distance (left column) and mass (right
column) evolution of the clusters F1, F2 and F3 in a dwarf galaxy
halo with a peak velocity Vmax = 20 km/s. Different colours
denote different initial galactocentric distances (r0). The orbits
are confined to the X − Y plane (i.e., the plane formed by the
halos’s long and intermediate axis) and have an orbital circularity
η = 1 (i.e. the initial velocity v0 is such that v0(r0) = Vc(r0)).

For simplicity, we consider orbits confined to the X-Y plane
(i.e. the plane formed by the long and intermediate axis of
the dwarf’s halo, respectively). We place model GCs at dif-
ferent galactocentric distances r(t = 0) ≡ r0 with an initial
velocity that corresponds to the circular velocity of the For-
nax dwarf at the cluster’s initial location, i.e v0 = Vc(r0).
The oscillation of the orbital radius around its initial value,
r0, results from the triaxiality of the halo potential (see e.g.
§ 3.3 of Binney & Tremaine 2008).

As expected from the estimates shown in Fig. 4, tidal
stripping has a minor impact on the evolution of the clus-
ters F2 and F3. Neglecting the internal evolution induced by
relaxation processes in these systems, our simulations show
that the tidal field of Fornax can strip a maximum 20% and
10% of the initial mass of the clusters F2 and F3, respec-
tively.

In contrast dynamical friction induces a strong orbital
decay of F2 and F3 only for those orbits that are initially
placed within r0

<∼ 1.5 kpc from the dwarf galaxy centre. The
orbital decay process is further strengthened by the small
amount of mass that these dense clusters lose. The effects
of dynamical friction become considerably weaker as we in-
crease r0. F2 and F3 models that are initially placed beyond
>∼ 1.5 kpc do not sink to the galaxy centre in a Hubble time.
These results are in good agreement with those of Goerdt
et al. (2006), considering that these authors use a different
numerical setup. Their models assume point-mass clusters
orbiting in a live, self-consistent NFW halo with parameters
similar to those adopted here. The fact that we derive similar
decay times lends support to the semi-analytical treatment
of dynamical friction presented in §3.

Although the present distances of the clusters F2, F3,

F4 and F5 to the centre of Fornax are unknown, their pro-
jected locations fall within the dwarf’s limiting radius (see
Table 1). If we adopt the projected position as the galacto-
centric distance, the fact that these clusters did not sink to
the galaxy centre within a Hubble time suggests that they
formed in the outer regions of Fornax and that dynamical
friction has had little influence on their orbital evolution.
This explanation, however, places strong constraints on the-
oretical models of the formation of GCs in dwarf galaxies, a
topic that still lacks theoretical underpinning.

We note here that Hernandez & Gilmore (1998) and
Goerdt et al. (2006) propose an alternative explanation for
the non-central positions of the Fornax GCs. These authors
show that adopting a cored halo profile can efficiently stall
the orbital decay process. Numerical simulations show that
in cored haloes dynamical friction is suppressed within the
halo core (Read et al. 2006) and that, as a result, the orbital
decay of GCs stalls at the core radius and does not proceed
to the galaxy centre. However, M54 presents a challenge for
this solution. M54 is the densest and most massive cluster
found in the Milky Way dSph population and presently sits
in the centre of the Sagittarius dSph. Its chemical compo-
sition and kinematics are clearly distinct from those of the
surrounding stars (Bellazzini et al. 2008), which indicates
that M54 formed elsewhere and was dragged to its present
location by dynamical friction, in a fashion similar to our
models shown here.

Finally, Fig. 4 shows that the cluster F1 suffers a neg-
ligible orbital decay regardless of the initial galactocentric
radius r0. Tidal mass stripping has negligible impact on the
models that orbit beyond >∼ 0.5 kpc. Smaller galactocentric
distances, however, lead to the complete tidal disruption of
F1 within a Hubble time. In the following Sections, we use
F1 as a testbed to study the observational imprints that the
tidal disruption of globular clusters may have left on dSph
stellar populations.

5 DISRUPTION OF CLUSTERS IN TRIAXIAL
POTENTIALS

5.1 The orbits

According to CDM modelling, dwarf galaxies are embedded
in dark matter halos that have a triaxial shape. Orbits in tri-
axial potentials are usually classified in four major families:
(i) boxes, (ii) loops (also called tubes), (iii) resonant orbits
and (iv) irregular (also called unstable or stochastic) or-
bits. The fraction of phase-space volume occupied by each of
those families depends on several factors, for example mass
profile and shape of the galaxy (e.g. Schwarzschild 1979,
1982; de Zeeuw & Merritt 1983; de Zeeuw 1985; Miralda-
Escudé & Schwarzschild 1989; Merritt & Valluri 1999). The
study of orbits in triaxial potentials is a complex topic and
beyond the scope of this contribution. We refer interested
readers to § 3.3 of Binney & Tremaine (2008) and the pa-
pers listed above for more detailed analysis.

For simplicity, we restrict our study to orbits that ini-
tially lie on the X − Y and X − Z symmetry planes; recall
that the coordinates (X, Y, Z) are oriented along the ma-
jor, intermediate and minor axis, respectively. Our N-body
models are placed along the major axis at an initial distance

c© 0000 RAS, MNRAS 000, 000–000

Results: Orbits/mass loss

• F2/F3 sink to halo center with negligible 
mass loss for sufficiently close start (e.g. 
M54 at center of Sag. dSph)

• F1 almost unaffected by DF, significant 
tidal mass loss for close start
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8 Peñarrubia, Walker & Gilmore

Figure 6. (X, U) surface of section of the orbits placed at an
initial distance r0 = 0.5 kpc from the dwarf centre. The orbital
planes are defined by the major and intermediate axis (lower
panel) and by the major and minor axis (top panel). The pa-
rameters of our dwarf galaxy halo have been scaled to the values
estimated for the Fornax dSph, Vmax = 20.6 km/s and rmax = 4.1
kpc.

r0. The range of initial distances explored here, r0 ∈ [0, 3]
kpc, extends considerably farther than the stellar truncation
radius of Fornax (Rt,For ≈ 2.1 kpc). To select the initial ve-
locity, v0, we define the orbital circularity η ≡ J/Jc(E),
where J = r0v0 is the angular momentum and Jc(E) the
angular momentum of a circular orbit with the same energy
E = 1/2v2

0 + ΦNFW(r0, 0, 0). This parameter has values in
the range η ∈ [0, 1]. Because in triaxial systems the angu-
lar momentum is not a constant of motion, η is only well
defined at t = 0. However, introducing this parameter to
define our initial set of orbits allow us: (i) to vary the initial
orbital energy at a fixed orbital apocentre in a simple way
and (ii) to facilitate a comparison with models in spherical
potentials in order to address the effects of triaxiality (see
§6.1).

Fig. 6 shows the surface of section of the orbits placed
initially at r0 = 0.5 kpc. In this plot, each dot corresponds to
a crossing of the plane specified by Z = Y = 0. The first re-
sult that stands out is the chaotic nature of the orbits, in the
sense that small variations in the initial velocity/circularity
can lead to completely different orbit configurations. This
plot includes examples of the four orbit families mentioned
above

• Box orbits: Systems on box orbits repeatedly pass
close to the centre of the potential, and eventually at arbi-
trarily close distances. They have no net angular momentum
and therefore no sense of rotation. Examples are the orbits
with η ≤ 0.2 in both panels of Fig. 6.

• Resonant orbits: Resonant orbits satisfy a relation of
the form lwX +mwY +nwZ = 0, where wi (i = X, Y, Z) are
the fundamental frequencies around the principal symmetry

Figure 7. Orbits on the X−Y (upper panel) X−Z (lower panel)
planes with orbital apocentre r0 = 0.5 kpc for different values of
circularity η.

axis and l, m, n integers, not all of which are zero. In the
surface of section plotted in Fig. 6, resonant orbits can be
seen as chains of islands (for example, orbits with η = 0.3 in
both panels. Also orbits with η = 0.5, 0.6 and 0.7 moving on
the X − Z plane are clear examples of resonant orbits). An
aspect of these orbits that will prove crucial for our study is
that, in contrast to boxes, resonant orbits are centrophobic,
i.e., they avoid the centre of the potential.

• Loop orbits: Systems moving on loops have a definite
sense of rotation about the galaxy centre and also avoid the
region of the origin. Interestingly, we find loop orbits only
on the plane X − Y . On the plane X − Z the region of
phase-space occupied by these orbits is filled with resonant

c© 0000 RAS, MNRAS 000, 000–000
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close to the centre of the potential, and eventually at arbi-
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and therefore no sense of rotation. Examples are the orbits
with η ≤ 0.2 in both panels of Fig. 6.

• Resonant orbits: Resonant orbits satisfy a relation of
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surface of section plotted in Fig. 6, resonant orbits can be
seen as chains of islands (for example, orbits with η = 0.3 in
both panels. Also orbits with η = 0.5, 0.6 and 0.7 moving on
the X − Z plane are clear examples of resonant orbits). An
aspect of these orbits that will prove crucial for our study is
that, in contrast to boxes, resonant orbits are centrophobic,
i.e., they avoid the centre of the potential.

• Loop orbits: Systems moving on loops have a definite
sense of rotation about the galaxy centre and also avoid the
region of the origin. Interestingly, we find loop orbits only
on the plane X − Y . On the plane X − Z the region of
phase-space occupied by these orbits is filled with resonant
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• Orbits initially lie in XY or XZ symmetry plane

• Expect centro-phobic orbits to be more stable to tidal disruption 
(less time spent in dense regions)
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Tidal disruption of Globular Clusters in Dwarf Galaxies 9

and unstable orbits. As resonant orbits, loops are also cen-
trophobic and do not approach the galaxy centre.

• Unstable orbits: Unstable orbits have only two con-
stants of motion in a three-dimensional space. As a result,
they do not show a definite structure in phase-space (see the
orbit η = 1 on the upper panel of Fig. 6). In contrast to box,
loop and resonant orbits, systems moving on unstable orbits
will quickly move off the symmetry planes2. These orbits can
be found more frequently around the minor and intermediate
axis and do not exist on the plane formed by the major and
intermediate axis (e.g. Goodman & Schwarzschild 1981).

We emphasize that structure of the surface of section
strongly depends on the apocentric radius of the orbit ra ≈
r0. As Gerhard & Binney (1985) show, the fraction of loop
orbits tends to increase at large distances, whereas resonant
orbits dominate the phase space volume close to the galaxy
centre.

The upper and lower panels of Fig. 7 show the projec-
tion of the orbits examined above on the orbital planes X−Y
and X−Z, respectively. These Figures illustrate the richness
of the orbit zoo allowed by a triaxial potential, even if this is
just a small sample of all the possible orbital configurations.

A clear transition between box and loop orbits can be
seen in the upper panel of Fig. 7 as we increase the value of
the orbital circularity. Orbits with η ≥ 0.6 are loops, whereas
orbits with η = 0.1, 0.2, 0.4 and 0.5 are boxes and boxlets.
The only example of a resonant orbit on this plane occurs
for η = 0.3, which corresponds to a resonance of the type
(l, m, n) = (−5, 4, 0). The number of resonances increases
on the plane X − Z, as we can see in the lower panel of
Fig. 7. For example, η = 0.3 corresponds to a (−5, 0, 4)
resonance whereas η = 0.6 is a”fish” orbit with a frequency
ratio of (3, 0,−2). Our potential allows for a much larger
number of resonances, many of which appear for orbits that
are not initially confined on the symmetry planes (see Merrit
& Valluri 1999 for details).

5.2 Cluster survival time

For a cluster with a fixed density profile, two factors deter-
mine the amount of tidal mass loss during a Hubble time:
(i) the pericentric distance of its orbit and (ii) the num-
ber of pericentric interactions. The orbital family impacts
both factors, determining how often and how close a system
can get to the galaxy centre. A cluster moving on a box
orbit passes repeatedly through the centre of the galaxy,
whereas a loop orbit always avoids the inner-most regions of
the potential. As Fig. 6 shows, resonant orbits represent an
intermediate case. We therefore expect that clusters on box
orbits will suffer the strongest episodes of mass loss while
those on loop orbits will have the largest survival times. On
the other hand, the number of pericentre passages within
a Hubble time depends on the orbital apocentre. Clusters
with a large r0 spend a large fraction of the orbital time
at large distances from the galaxy centre and thus suffer a

2 For a recent study of orbit instability in a triaxial potential such
as the one considered here see Adams et al. (2007) and references
therein.

Figure 8. Survival time (ts) of the cluster F1 as a function of the
initial distance r0 to the galaxy centre and the orbital circularity
η. Horizontal dotted lines indicate the value of a Hubble time
tH = 14 Gyr. The NFW potential has a peak velocity Vmax = 20
km/s, similar to the value estimated for the Fornax dSph.

small number of pericentric interactions. As a result, we ex-
pect that the mass loss rate will decrease on average as r0

increases.
We define the cluster survival time, ts, as the time re-

quired for a cluster to lose 95% of its initial mass. Although
arbitrary, this definition provides an accurate estimate of
the survival time of cored clusters. Peñarrubia et al. (2002)
and Zhao (2004) find that cored stellar systems that are
subject to tidal mass stripping show a characteristic mass
evolution that can be divided into two different regimes: (i)
a prolonged and slow mass loss regime that is typically fol-
lowed by (ii) a sharp tidal disruption that merely spans a
few crossing times. This implies that our particular defini-
tion of “survival time” has an inaccuracy of the order of the
cluster’s dynamical time, i.e. a small fraction of a Hubble
time for the cluster models considered here.

We must note that, since relaxation processes speed up
the rate of tidal mass stripping (see § 3.2 for details), the sur-
vival times derived here represent upper values. On the other
hand, the fact that our potential is kept fixed during the
whole cluster evolution tends to underestimate the survival
time of GCs in dwarf galaxies because, in self-consisent sys-
tems, the inner regions of dark matter haloes are expected
to react when the enclosed halo mass compares with the
mass of the cluster, which in practice decreases the strength
of the dwarf’s tidal field.

Bearing these limitations in mind, Fig. 8 shows the sur-
vival times computed for the cluster F1 in a potential scaled
to the parameters of the Fornax dSph. We have explored a
wide range of apocentric distances 0 ≤ r0 ≤ 2.5 kpc, and
note that the stellar truncation radius of Fornax occurs at
Rt,For = 2.1 kpc. As the Figure shows, the survival time in-
creases monotonically as the apocentric distance increases.
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Figure 13. Ratio between the survival time of the cluster F1
in a spherical (tsph

s ) and a triaxial (ttris ) halo with axis-ratios
(a, b, c) = (1, 47, 1.22, 0.74). This quantity is plotted as a function
of the initial distance r0 to the galaxy centre and the orbital
circularity η. The NFW potential has a peak velocity Vmax = 20
km/s, similar to the value estimated for the Fornax dSph.

model all orbits moving on the X − Z plane are either box
or resonant orbits. The difference in survival time becomes
stronger as we move to high η, which is equivalent to in-
creasing the orbital pericentre in a spherical potential, and
can be as large as tsph

s ≈ 10ttris for η # 1 (i.e. circular orbits
in a spherical potential).

Loop orbits and rosettes share a good number of char-
acteristics. For example, not only do both avoid the centre
of the potential, also both have a definite sense of motion
around the galaxy centre. The spatial distribution of tidal
debris from disrupted clusters moving on rosettes will be
therefore similar to that shown in Fig. 9 for the models with
η ≥ 0.6. These tidal debris will also have a mean rotational
velocity that will extend approximately out to the orbital
apocentre of the progenitor cluster, in a similar fashion as
discussed in §5.4. Finally, a noteworthy corollary is that the
stellar features associated with the tidal disruption of a stel-
lar cluster moving on box and resonant orbits (e.g. shells and
isolated clumps, see Fig. 9 and 10) do not arise in a spheri-
cal potential and may be used therefore to address the shape
of dark matter haloes.

6.2 Detectability of Globular Cluster debris

In §5.3 we show that the tidal disruption of a 104L! globular
cluster in the triaxial potential of a typical dwarf galaxy may
form stellar substructures that do not dissolve in time. With
surface brightnesses µ >∼ 26 mag/arcsec2, some of these fea-
tures fall within the detection limits of present instrumen-
tation. However, most of those substructures will be sur-
rounded by a sea of dwarf field stars, hindering the iden-
tification of cluster debris as stellar over-densities in both

photometric and kinematical surveys. The detection of a dis-
ruption event will therefore be more likely in regions where
the surface brightness of the cluster debris is similar to or
higher than that of the field stars.

To explore this issue in some detail, Fig. 14 shows the
surface density profiles averaged on circular annuli of the
cluster F1 models that result in a complete tidal disrup-
tion within a Hubble time. We distinguish here between or-
bits initially confined to the X-Y (left panel) and X-Z (right
panel) planes. For simplicity we consider a line-of-sight pro-
jection perpendicular to the orbital plane. We also plot the
King model fits of the surface density profiles of the Fornax
and Carina dwarfs (Mateo 1998) with dotted and dashed
lines, respectively.

We begin by discussing the orbits with the smallest or-
bital apocentre considered in this paper, r0 = 0.5 kpc. As
we show in Fig. 8 these orbits result in the complete tidal
disruption of F1 regardless of its orbital circularity η. As the
top-right and left panels show, the surface density profile of
the tidal debris is sensitive to the orbital family: (i) box (e.g.
η = 0.1) and resonant (e.g. η = 0.3) orbits yield debris distri-
butions resembling King (1962) models, i.e. cored in the in-
ner regions with a central surface density Σ0

<∼ 105M!/kpc2,
and having a sharp truncation radius at large radii. (ii) Loop
orbits (η ≥ 0.6 in the left panel), in contrast, yield debris
distributions with a clear scarcity of stars in the inner-most
regions of the dwarf. In all orbital configurations cluster de-
bris shows a truncation radius that closely correlates with
the progenitor’s apocentre. In particular, we find that the
distribution of debris is truncated at R ≈ 1.2r0 regardless
of the orbital family.

As discussed in §5.2, as we increase the orbital apocen-
tre of the cluster F1, only box and resonant orbits lead to
a complete tidal disruption within a Hubble time. This is
because these orbits bring the cluster F1 repeatedly to the
centre of the dwarf galaxy regardless of the orbital apocen-
tre. A crucial result for the possible detectability of the tidal
debris is that disruption occurs even for orbits with apoc-
entres that are larger than the limiting radius of the host
galaxy, i.e. r0

>∼Rt,For = 2.1 kpc for the Fornax dwarf. As
the orbital apocentre increases, the cluster debris extends
over larger volumes, leading to a drop in central surface
density. We find that for apocentres r0 = 1.5 and 2.5 kpc,
the central surface density of the debris lies in the range
Σ0 ∼ 103–104M!/kpc2 depending on circularity and orbital
orientation.

The maximum surface density (averaged over circular
annuli) associated with tidal debris from the cluster F1 is
Σ ∼ 105M!/kpc2. This value is considerably lower than that
of both Fornax and Carina, which implies that identifying
cluster stars from the background stellar population in the
central regions of dwarfs will require a sizable data set and
additional kinematical information.

In contrast, cluster debris may dominate the overall
light distribution at large radii if the progenitor cluster was
formed beyond the limiting radius of the host galaxy (see
§4.4). Unfortunately, Fig. 14 shows that even in regions with
a scarce presence of dwarf stars the detection of cluster de-
bris may be observationally challenging in extended, lumi-
nous galaxies like Fornax given the depth that the survey
should reach, approximately four decades below the central
surface density.
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• 95% mass loss defined as disruption

• Sufficiently close in, F1 is disrupted 
independent of angular momentum

• Further out, centro-phobic orbits can 
help a GC survive tidal destruction
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• GCs survive longer in spherical 
halos: More centro-phobic rosettes, 
no box or resonant orbits

• Higher angular momentum, fewer 
passes through higher density 
regions, more robust GCs
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Figure 14. Surface density profiles averaged on circular annuli of the cluster F1 debris. The left and right panels include models that
lead to the complete tidal disruption of the cluster F1 moving on the X-Y and X-Z planes, respectively. Rows show orbits with different
orbital apocentres (r0). Dotted and dashed lines show the surface density profiles of Fornax and Carina, respectively. Note that in some
of these models cluster debris dominates the overall light profile beyond the limiting radius of the dwarf.

Finally, a noteworthy remark is that sizable spectro-
scopic surveys may reveal the presence of cluster debris re-
gardless of the host background surface density if the now-
defunct clusters had a chemical abundance pattern different
from that of most of the dSph stars. We shall return to this
issue below.

6.3 Were Globular Clusters more common in
dSphs?

At present, only the Sagittarius and Fornax dwarfs have
associated populations of bound GCs. An understanding of
the formation mechanism of these objects is still lacking,
and it is unclear whether other dwarf galaxies may have also
formed clusters that were subsequently tidally disrupted. It
is thus interesting to carry out a Gedankenexperiment that
explores whether the set of observables in the present dSph

population could help us to infer if such disruption events
occurred in the past.

As discussed in the previous Section, the fact that For-
nax and Sagittarius are the most luminous and spatially
extended dSphs of the Milky Way (Mateo 1998) may hide
possible underlying stellar over-densities with low surface
brightness. Fig. 14 shows that the potential presence of GC
debris would be considerably more straightforward to de-
tect in small, faint dwarf galaxies like Carina. According to
the estimates of Peñarrubia et al. (2008a), Fornax and Ca-
rina are embedded in dark matter halos with similar NFW
parameters, despite the fact that Fornax is a factor ∼ 100
more luminous and has a half-light radius that is around
three times larger. The similarity of their halos implies that,
for a given orbit, the cluster F1 would follow practically the
same dynamical evolution in both galaxies. Taking the Ca-
rina dwarf as an example, the tidal disruption of the cluster
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Results: Surface brightness of debris

• GCs for wider variety of ang. mom. disrupted for 
close start

• Further start spreads debris over larger area in 
disruptive case

• Lower central       

• Conceivable detectable region at outer 
edge, tenuous!

• Excess light beyond dSph King radius in 
Carina, Sculptor, Leo I, Ursa Minor?
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Figure 10. As Fig. 9 for orbits initially on the X − Z plane .

large apocentres tend to exhibit a high line-of-sight peak ve-
locity that can reach values comparable to the halo’s peak
velocity, Vmax,For = 20.6 km/s. In all the models examined
here the maximum of 〈vl.o.s〉 occurs at # 0.3–0.5 kpc from
the dwarf’s centre. Beyond that radius this quantity rapidly
decreases, leveling off at ∼ 5 km/s.

Although loop orbits are interesting due to the rota-
tional component that they introduce in non-rotating sys-
tems like dSphs, the dominant orbital families in the inner
regions of triaxial NFW dark matter halos are box and res-
onant orbits (see Fig. 6). To examine the debris kinematics
associated with these types of orbits we inspect orbits on
the X-Z plane.

In Fig. 12 we plot the projected velocity dispersion de-
fined as σ2

l.o.s ≡ 〈(vl.o.s − 〈vl.o.s〉)2〉 for the models shown in
Fig. 10. For comparison purposes, we note that the field stars
of Fornax show a flat velocity dispersion profile σFor # 10.5
km/s (Walker et al. 2006a, 2007).

Fig. 12 displays a strong dependence of velocity disper-
sion on the projection angle: cluster debris is fairly cold,
σl.o.s

<∼ 3 km/s for all orbital circularities, so long as the
projection angle is perpendicular to the orbital plane. This
reflects the low velocity dispersion of the progenitor clus-
ter F1 σ0 = [4πG/9R2

cρ0]
1/2 # 1.34 km/s (see Table 1). In

this particular line-of-sight projection, all the bright features
visible in the X-Z panels of Fig. 10 and 12 have a velocity
dispersion comparable to that of the progenitor cluster and
always exhibit a high degree of symmetry with respect to the
dwarf centre regardless of the progenitor’s orbital family.

Contrary to naive expectations, owing to the high radial
anisotropy of these orbits the cluster debris can also appear
hotter than the surrounding field stars if the line-of-sight
direction lies on the orbital plane. As Fig. 12 illustrates,
cluster debris may have projected velocity dispersions with
strong gradients throughout the galaxy and a fairly complex
geometry. Box orbits tend to show a decreasing dispersion
profile from the dwarf’s centre, whereas off-centre, isolated
hot clumps arise from resonant orbits. In these models, there
is a clear correspondence between the brightest areas shown
in Fig. 10 and the “hottest” regions visible in Fig. 12, which
show projected velocity dispersions that can be as high as
∼ 14 km/s.
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Results: debris morphology

• Debris morphology clearly 
traces orbit of GC

• Debris most clearly seen face 
on in imaging
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Tidal disruption of Globular Clusters in Dwarf Galaxies 13

Figure 12. Projected velocity dispersion of the models shown in Fig. 10. Note that all models shwon here move on either box or resonant
orbits. For comparison, Fornax’s field stars have a projected velocity dispersion of ! 10.5 km/s practically constant at all radii (Walker
et al. 2007). Note the strong dependence on the line-of-sight projection: debris appear fairly cold (σl.o.s < 3 km/s) if the line of sight
is perpendicular to the orbital plane. However, if the line of sight is aligned with the orbital plane, strong velocity dispersion gradients
arise in almost all orbital configurations. In localized areas the tidal debris field may appear considerably hotter than Fornax’s field stars,
with a projected velocity dispersion that may reach σl.o.s ! 14 km/s.

6 DISCUSSION

6.1 Effects of halo triaxiality

As previously discussed, a fundamental prediction of the
CDM paradigm is that dark matter haloes have a triax-
ial shape. There are few contributions in the literature that
study the disruption of stellar systems in triaxial potentials,
and it is interesting to analyze here, though briefly, how the
adoption of a triaxial halo may have influenced our results.

In contrast to spherical haloes, which allow only rosette
orbits, triaxial haloes allow a wide range of orbital families
with very different properties, as outlined in §5.1. In the
context of the survival of stellar clusters in dwarf galaxies,
this has strong consequences.

As loop orbits, rosettes are centrophobic and avoid the
centre of the potential, with the single exception of a ra-
dial (η = 0) orbit. Further, the pericentric distance and the
orbital period are increasing functions of η, which implies
that, at a fixed apocentre, the survival time of star clusters
ts = ts(η) increases monotonically. As we discuss in §5.2

this characteristic is not shared by box and resonant orbits,
which can come arbitrarily close to the centre of the host
in repeated occasions with independence of the value of η.
As a result, clusters that move on box and resonant orbits
have shorter survival times than those on rosette orbits for
a given orbital circularity and apocentric distance r0.

To illustrate quantitatively the change in ts introduced
by the halo triaxiality, we plot in Fig. 13 the ratio tsph

s /ttris

of the cluster F1 as a function of circularity for different
orbital apocentres. This Figure shows that, independently
of the orbital parameters, triaxiality always strengthens the
tidal disruption of stellar clusters, so that tsph

s
>∼ ttris . The

difference is smallest for the lowest values of η (i.e. highly
radial orbits in spherical potentials) and, due to the simili-
tude between loop and rosette orbits, for the combinations
of r0 and η that correspond to loop orbits in a triaxial po-
tential (e.g. r0 = 0.5 kpc and η ≥ 0.6 in the lower panel). As
expected, clusters on box and resonant orbits survive shorter
times than on rosettes. This result is particularly evident in
the upper panel of Fig. 13, recalling that in our triaxial halo
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Results: debris kinematics
• Kinematic ‘fossil’ of original orbit best 

seen in orbital plane 

• Hints of rotation seen in Carinae, Leo I, 
Sculptor, Fornax: rotating sub-population 
would be a tell-tale sign of disrupted 
stellar remnant

• UMi has kinematically cold clump: but 
asymmetric (more undetected, or 
unrelated to GC)

• CV has extremely kinematically cold, 
central, metal poor clump, and a metal 
rich one, not as cold

• Chemical tagging could conceivably add 
support to the GC hypothesis: Fornax GC 
are metal-poor
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Figure 15. Evolution of the spatial and kinematical distribution of cluster F1 debris in an NFW halo that loses a fraction of its initial
mass to tides. This particular model corresponds to the orbit with r0 = 0.5 kpc, η = 0.8 shown in Fig. 10 and 12. Note that the tidal
stripping of dwarf galaxies may potentially erase stellar substructures resulting from the tidal disruption of stellar clusters.

F1 would be easily detectable at approximately two decades
below the central surface brightness as an excess of light be-
yond the King limiting radius derived from the inner profile.
Interestingly, such excesses have been found in several dwarf
galaxies (Carina, Majewski et al. 2005; Leo I, Sohn et al.
2007; Sculptor, Westfall et al. 2006; Ursa Minor, Mart́ınez-
Delgado et al. 2001, Palma et al. 2003), although they have
been often interpreted as signatures of a recent tidal inter-
action with the Milky Way (e.g. Muñoz et al. 2008 and ref-
erences therein). However, Peñarrubia et al. (2008c) argue
that the orbital motion of some of these systems (e.g. Leo
I) is incompatible with the presence of unbound stellar ma-
terial within the area surveyed by current data, which casts
doubts on the tidal origin of the reported extra-tidal features.

The models presented in the previous Sections show
that kinematic information may help to identify globular
cluster debris. As discussed in §5.3 and 5.4, if the cluster’s
orbital plane is approximately perpendicular to the line-of-
sight directions, shells and off-centre clumps with cold pro-
jected velocity dispersions would be a clear signature of a

cluster merger. Encouragingly, the presence of stellar sub-
structures has been reported in Fornax (Coleman et al. 2004,
2005; Olszewski et al. 2006), Canes Venatici (Ibata et al.
2006, Martin et al. 2008; also see Simon & Geha 2007 for a
discrepant result) and Sextans (Kleyna et al. 2004, Walker
et al. 2006b), although some of these detections remain con-
troversial due to their marginal statistical significance.

The presence of an off-centre localized stellar clump,
reminiscent of those detected in dwarf elliptical galaxies (e.g.
Binggeli et al. 2000), is probably clearest in the Ursa Minor
dwarf (Olszewski & Aaronson 1985; Irwin & Hatzidmitriou
1995; Wyse et al. 2002; Palma et al. 2003), and has also been
confirmed by deep photometric data taken with the Wield
Field Planetary Camera (WFPC2) on the HST (Battinelli &
Demers 1999). This over-density locates 13” (! 0.021 core
radii) from the dwarf’s centre. The metalicity of the stel-
lar clump appears indistinguishible from the bulk popula-
tion of the dwarf (Eskridge & Schweitzer 2001), which only
contains a single, old stellar population (e.g., Mateo 1998;
Feltzing, Gilmore & Wyse 1999). Interestingly, Kleyna et al.
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Results: ‘Shedding’ dSph NFW halo

• Real dwarves lose mass due to 
tidal interactions with host halo

• Simulation run for additional 
Hubble time with 90 or 99% of 
dwarf mass suddenly removed

• Crude approximation to tidal 
mass loss from dwarf

• Dwarf potential well made 
shallower: GC debris puffs out

• Debris becomes cold and more 
diffuse
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Concluding thoughts

• A good first start

• Simulations should be re-done with realistic initial distances, radial/angular velocities, 
off-axis orbits (input from a new n-body simulation?)

• Full distribution of halo geometries should be used

• A live dSph DM halo orbiting in MW halo would yield more robust conclusions, more 
realistic dF results, account for mass loss
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