Cosmological Hydrogen Recombination: The effect of extremely high-n states

Daniel Grin
in collaboration with Christopher M. Hirata
FermiLab Seminar
11/5/09

OUTLINE

* Motivation: CMB anisotropies and recombination spectra
* Recombination in a nutshell
* Breaking the Peebles/RecFAST mold
* RecSparse: a new tool for high-n states
* Forbidden transitions
* Results
* Ongoing/future work

WALK THE PLANCK

* Planck (launched May 2009) will make cosmic-variance limited CMB anisotropy measurements up to l~2500 (T), and l~1500 (E)

* Wong 2007 and Lewis 2006 show that $\mathrm{x}_{e}(z)$ needs to be predicted to several parts in 10^{4} accuracy for Planck data analysis

RECOMBINATION, INFLATION, AND REIONIZATION

* Planck uncertainty forecasts using MCMC

$$
\mathrm{P}(\mathrm{k})=\mathrm{A}_{s}\left(k \eta_{0}\right)^{n_{s}-1}
$$

* Cosmological parameter inferences will be off if recombination is improperly modeled (Wong/Moss/Scott 2007)
* Leverage on new physics comes from high 1. Here the details of recombination matter!
* Inferences about inflation will be wrong if recombination is improperly modeled

$$
\begin{aligned}
& \mathrm{n}_{s}=1-4 \epsilon+2 \eta \quad \epsilon=\frac{m_{\mathrm{pl}}^{2}}{16 \pi}\left[\frac{V^{\prime}(\phi)}{V(\phi)}\right]^{2} \quad \mathrm{~A}_{s}^{2}=\left.\frac{32}{75} \frac{V}{m_{\mathrm{p} 1}^{4} \epsilon}\right|_{k_{\mathrm{pivot}}=a H} \\
& \text { CAVEAT EMPTOR: }
\end{aligned}
$$

Need to do eV physics right to infer anything about $10^{15} \mathrm{GeV}$ physics!

RECOMBINATION, INFLATION, AND REIONIZATION

* Planck uncertainty forecasts using MCMC

$$
\mathrm{P}(\mathrm{k})=\mathrm{A}_{s}\left(k \eta_{0}\right)^{n_{s}-1}
$$

Bad recombination history yields biased inferences about reionization

Who CARES?

SMEARING AND MOVING THE SURFACE OF LAST SCATTERING

 (SLS)* Photons kin. decouple when Thompson scattering freezes out

$$
\gamma+e^{-} \Leftrightarrow \gamma+e^{-}
$$

* Acoustic mode evolution influenced by visibility function

$$
g(\tau)=\dot{\tau} e^{-\tau}
$$

${ }^{*} z_{\mathrm{dec}} \simeq 1100:$ Decoupling occurs during recombination

$$
\begin{gathered}
C_{l} \rightarrow C_{l} e^{-2 \tau(z)} \text { if } l>\eta_{\mathrm{dec}} / \eta(z) \\
\tau(z)=\int_{0}^{\eta(z)} n_{e} \sigma_{T} a\left(\eta^{\prime}\right) d \eta^{\prime}
\end{gathered}
$$

WHO CARES? The Silk Damping Tail

$$
l_{\text {damp }} \sim 1000
$$

From Wayne Hu's website

* Inhomogeneities are damped for $\lambda<\lambda_{D}$

WHO CARES?
 The Silk Damping Tail

* Inhomogeneities are damped for $\lambda<\lambda_{D}$

Who CARES?

Finite thickness of the SLSS

* Additional damping of form
$\left|\Theta_{l}\left(\eta_{0}, k\right)\right| \rightarrow\left|\Theta_{l}\left(\eta_{0}, k\right)\right| e^{-\sigma^{2} \eta_{\mathrm{rec}}^{2} k^{2}}$

Who CARES? CMB POLARIZATION

* From Wayne Mu's website
* Need to scatter quadrapole to polarize CMB

$$
\Theta_{l}^{P}(k)=\int d \eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T, 2}(k, \eta) \frac{l^{2}}{(k \eta)^{2}} j_{l}(k \eta)
$$

* Need time to develop a quadrapole
$\Theta_{l}(k \eta) \sim \frac{k \eta}{2 \tau} \Theta_{l}(k \eta) \ll \Theta_{l}(\eta)$ if $l \geq 2$, in tight coupling regime

Who Cares? MB POLARIZATION

* Need to scatter quadrapole to polarize CMB

$$
\Theta_{l}^{P}(k)=\int d \eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T, 2}(k, \eta) \frac{l^{2}}{(k \eta)^{2}} j_{l}(k \eta)
$$

* Need time to develop a quadrapole
$\Theta_{l}(k \eta) \sim \frac{k \eta}{2 \tau} \Theta_{l}(k \eta) \ll \Theta_{l}(\eta)$ if $l \geq 2$, in tight coupling regime

Who Cares? MB POLARIZATION

* Need to scatter quadrapole to polarize CMB

$$
\Theta_{l}^{P}(k)=\int d \eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T, 2}(k, \eta) \frac{l^{2}}{(k \eta)^{2}} j_{l}(k \eta)
$$

* Need time to develop a quadrapole
$\Theta_{l}(k \eta) \sim \frac{k \eta}{2 \tau} \Theta_{l}(k \eta) \ll \Theta_{l}(\eta)$ if $l \geq 2$, in tight coupling regime

Who Cares? SPECTRAL DISTORTIONS FROM RECOMBINATION

SAHA EQUILIBRIUM IS INADEQUATE

$$
p+e^{-} \leftrightarrow H^{(n)}+\gamma^{(n c)}
$$

* Chemical equilibrium does reasonably well predicting "moment of recombination"

$$
\frac{x_{e}^{2}}{1-x_{e}}=\left(\frac{13.6}{T_{\mathrm{eV}}}\right)^{3 / 2} e^{35.9-13.6 / T_{\mathrm{eV}}}
$$

$$
x_{e}=0.5 \text { when } T=T_{\mathrm{rec}} \simeq 0.3 \mathrm{eV} \quad z_{\mathrm{rec}} \simeq 1300
$$

*Further evolution falls prey to reaction freeze-out

$$
\Gamma<H \text { when } T<T_{\mathrm{F}} \simeq 0.25 \mathrm{eV}
$$

BOTTLENECKS/ESCAPE ROUTES

BOTTLENECKS

* Ground state recombinations are ineffective

$$
\tau_{c \rightarrow 1 s}^{-1}=10^{-1} \mathrm{~s}^{-1} \gg H \simeq 10^{-12} \mathrm{~s}^{-1}
$$

*Resonance photons are re-captured, e.g. Lyman α

$$
\tau_{2 p \rightarrow 1 s}^{-1}=10^{-2} \mathrm{~s}^{-1} \gg H \simeq 10^{-12} \mathrm{~s}^{-1}
$$

ESCAPE ROUTES (e.g. n=2)

* Two-photon processes

$$
H^{2 s} \rightarrow H^{1 s}+\gamma+\gamma \quad \Lambda_{2 \mathrm{~s} \rightarrow 1 \mathrm{~s}}=8.22 \mathrm{~s}^{-1}
$$

* Redshifting off resonance

$$
R \sim\left(n_{\mathrm{H}} \lambda_{\alpha}^{3}\right)^{-1}\left(\frac{\dot{a}}{a}\right)
$$

THE PEEBLES PUNCHLINE

* Only n=2 bottlenecks are treated
*Net Rate is suppressed by bottleneck vs. escape factor

$$
-\frac{d x e}{d t}=\mathcal{S} \sum_{n, l>1 s} \alpha_{n l}(T)\left\{n x_{e}^{2}-x_{1 s} e^{-\frac{B_{1}}{k T}}\left(\frac{2 \pi m_{c} k T}{h^{2}}\right)^{3 / 2}\right\}
$$

THE PEEBLES PUNCHLINE

* Only n=2 bottlenecks are treated
*Net Rate is suppressed by bottleneck vs. escape factor

$$
-\frac{d x e}{d t}=S \sum_{n, l>1 s} \alpha_{n l}(T)\left\{n x_{e}^{2}-x_{1 s} e^{-\frac{B_{1}}{k T}}\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2}\right\}
$$

THE PEEBLES MODEL

*Net Rate is suppressed by bottleneck vs. escape factor
$\mathcal{C}=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{\alpha}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{c}\right)}$

THE PEEBLES MODEL

*Net Rate is suppressed by bottleneck vs. escape factor
$\mathcal{C}=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{c}\right)}$
Redshifting term

THE PEEBLES MODEL

*Net Rate is suppressed by bottleneck vs. escape factor
$\mathcal{C}=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{c}\right)} \quad 2 \gamma$ term

THE PEEBLES MODEL

*Net Rate is suppressed by bottleneck vs. escape factor
$\mathcal{C}=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{c}\right)} \longrightarrow$ Ionization Term

THE PEEBLES MODEL

*Net Rate is suppressed by bottleneck vs. escape factor
$\mathcal{C}=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{c}\right)}$ Ionization Term
redshift term

$$
0.02 \frac{\Omega_{m}^{1 / 2}}{\left(1 \quad x_{e}[z]\right)\left(\frac{1+z}{1100}\right)^{3 / 2}}
$$

2γ process dominates until late times $(z \lesssim 850)$

THE PEEBLES MODEL

* Peebles 1967: State of the Art for 30 years!

EQUILIBRIUM ASSUMPTIONS

*Radiative/collisional eq. between different 1

$$
\mathcal{N}_{n l}=\mathcal{N}_{n} \frac{(2 l+1)}{n^{2}}
$$

* Radiative eq. between different n-states

$$
\mathcal{N}_{n}=\sum_{l} \mathcal{N}_{n l}=\mathcal{N}_{2} e^{-\left(E_{n}-E_{2}\right) / T}
$$

*Matter in eq. with radiation due to Thompson scattering

$$
T_{m}=T_{\gamma} \text { since } \frac{\sigma_{\mathrm{T}} a T_{\tau^{4}}^{4}}{m_{e} c^{2}}<H(T)
$$

EQUILIBRIUM ASSUMPTIONS

*Radiative/collisional eq. between different 1

$$
\mathcal{N}_{n l}=\mathcal{N}_{n} \frac{(2 l+1)}{n^{2}}
$$

Seager/Scott/Sasselov 2000/RECFAST!

* Radiative eq. between different n-states

$$
\mathcal{N}_{n}=\sum_{l} \mathcal{N}_{n l}=\mathcal{N}_{2} e^{-\left(E_{n}-E_{2}\right) / T}
$$

Non-eq rate equations
*Matter in eq. with radiation due to Thompson scattering

$$
T_{m}=T_{\gamma} \text { since } \frac{\sigma_{\mathrm{T}} a T_{\gamma}^{4} c}{m_{e} c^{2}}<H(T)
$$

BREAKING EQUILIBRIUM

* Chluba et al. $(2005,6)$ follow 1 , n separately, get to $n_{\max }=100$
* 0.1 \%-level corrections to CMB anisotropies at $n_{\max }=100$
* Equilibrium between l states: $\Delta l= \pm 1$ bottleneck
* Beyond this, testing convergence with $n_{\max }$ is hard!

$$
t_{\text {compute }} \sim \mathcal{O} \text { (years) for } \mathrm{n}_{\max }=300
$$

How to proceed if we want 0.01% accuracy in $x_{e}(z)$?

THESE ARE REAL STATES

* Still inside plasma shielding length for $\mathrm{n}<100000$
* $r \sim a_{0} n^{2}$ is as large as $2 \mu \mathrm{~m}$ for $n_{\max }=200$
* $\frac{\left.\Delta E\right|_{\text {thermal }}}{E}<\frac{2}{n^{3}}$
* Similarly high n are seen in emission line nebulae

THE EFFECT OF RESOLVING L- SUBSTATES

Resolved I vs unresolved I

* 'Bottlenecked' 1-substates decay slowly to 1s: Recombination is slower; Chluba al. 2006

RECSPARSE AND THE MULTI-LEVEL ATOM

* We implement a multi-level atom computation in a new code, RecSparse!
* Bound-bound rates evaluated using Gordon (1929) formula and verified using WKB
* Bound-free rates tabulated and integrated at each T_{m}
* Boltzmann eq. solved for $\mathrm{T}_{m}\left(T_{\gamma}\right)$

The multi-Level atom (MLA)

* Two photon transitions between $\mathrm{n}=1$ and $\mathrm{n}=2$ are included:

$$
\dot{x}_{2 s \rightarrow 1 s, 2 \gamma}=-\dot{x}_{1 s \rightarrow 2 s, 2 \gamma}=\Lambda_{2 s}\left(-x_{2 s}+x_{1 s} e^{-E_{2 s \rightarrow 1 s} / T_{\gamma}}\right)
$$

* Net recombination rate:

$$
\begin{aligned}
& x_{e} \simeq 1-x_{1 s} \rightarrow \dot{x}_{e} \simeq-\dot{x}_{1 s}=-\dot{x}_{1 s \rightarrow 2 s} \\
& +\sum_{n, l>1 s} A_{n 1}^{00} P_{n 1}^{00}\left\{\frac{g_{n l}}{2} f_{n 1}^{+} x_{1 s}-\left(1+f_{n 1}^{+}\right) x_{n l}\right\}
\end{aligned}
$$

The multi-Level atom (MLA)

* Two photon transitions between $\mathrm{n}=1$ and $\mathrm{n}=2$ are included:

$$
\dot{x}_{2 s \rightarrow 1 s, 2 \gamma}=-\dot{x}_{1 s \rightarrow 2 s, 2 \gamma}=\Lambda_{2 s}\left(-x_{2 s}+x_{1 s} e^{-E_{2 s \rightarrow 1 s} / T_{\gamma}}\right)
$$

* Net recombination rate:

2 s-1 s decay rate

$$
\begin{aligned}
& x_{e} \simeq 1-x_{1 s} \rightarrow \dot{x}_{e} \simeq-\dot{x}_{1 s}=-\dot{x}_{1 s \rightarrow 2 s} \\
& +\sum_{n, l>1 s} A_{n 1}^{l 0} P_{n 1}^{00}\left\{\frac{g_{n l}}{2} f_{n 1}^{+} x_{1 s}-\left(1+f_{n 1}^{+}\right) x_{n l}\right\}
\end{aligned}
$$

The multi-Level atom (MLA)

* Two photon transitions between $\mathrm{n}=1$ and $\mathrm{n}=2$ are included:

$$
\dot{x}_{2 s \rightarrow 1 s, 2 \gamma}=-\dot{x}_{1 s \rightarrow 2 s, 2 \gamma}=\Lambda_{2 s}\left(-x_{2 s}+x_{1 s} e^{-E_{2 s \rightarrow 1 s} / T_{\gamma}}\right)
$$

* Net recombination rate:

$$
\begin{aligned}
& x_{e} \simeq 1-x_{1 s} \rightarrow \dot{x}_{e} \simeq-\dot{x}_{1 s}=-\dot{x}_{1 s \rightarrow 2 s} \\
& +\sum_{n, l>1 s} A_{n 1}^{00} P_{n 1}^{00}\left\{\frac{g_{n l}}{2} f_{n 1}^{+} x_{1 s}-\left(1+f_{n 1}^{+}\right) x_{n l}\right\} \\
& \quad \text { Einstein coeff. }
\end{aligned}
$$

The multi-Level atom (MLA)

* Two photon transitions between $\mathrm{n}=1$ and $\mathrm{n}=2$ are included:

$$
\dot{x}_{2 s \rightarrow 1 s, 2 \gamma}=-\dot{x}_{1 s \rightarrow 2 s, 2 \gamma}=\Lambda_{2 s}\left(-x_{2 s}+x_{1 s} e^{-E_{2 s \rightarrow 1 s} / T_{\gamma}}\right)
$$

* Net recombination rate:

$$
\begin{aligned}
& x_{e} \simeq 1-x_{1 s} \rightarrow \dot{x}_{e} \simeq-\dot{x}_{1 s}=-\dot{x}_{1 s \rightarrow 2 s} \\
& +\sum_{n, l>1 s} A_{n 1}^{l 0} P_{n 1}^{l 0}\left\{\frac{g_{n}}{2} f_{n 1}^{+} x_{1 s}-\left(1+f_{n 1}^{+}\right) x_{n l}\right\} \\
& \\
& \text { Occ. number blueward of line }
\end{aligned}
$$

The multi-Level atom (MLA)

* Two photon transitions between $\mathrm{n}=1$ and $\mathrm{n}=2$ are included:

$$
\dot{x}_{2 s \rightarrow 1 s, 2 \gamma}=-\dot{x}_{1 s \rightarrow 2 s, 2 \gamma}=\Lambda_{2 s}\left(-x_{2 s}+x_{1 s} e^{-E_{2 s \rightarrow 1 s} / T_{\gamma}}\right)
$$

* Net recombination rate:

$$
\begin{aligned}
& x_{e} \simeq 1-x_{1 s} \rightarrow \dot{x}_{e} \simeq-\dot{x}_{1 s}=-\dot{x}_{1 s \rightarrow 2 s} \\
& +\sum_{n, l>1 s} A_{n 1}^{l 0} P_{n 1}^{l 0}\left\{\frac{g_{n l}}{2} f_{n 1}^{+} x_{1 s}-\left(1+f_{n 1}^{+}\right) x_{n l}\right\}
\end{aligned}
$$

Escape probability

The multi-Level atom (MLA)

* Two photon transitions between $\mathrm{n}=1$ and $\mathrm{n}=2$ are included:

$$
\dot{x}_{2 s \rightarrow 1 s, 2 \gamma}=-\dot{x}_{1 s \rightarrow 2 s, 2 \gamma}=\Lambda_{2 s}\left(-x_{2 s}+x_{1 s} e^{-E_{2 s \rightarrow 1 s} / T_{\gamma}}\right)
$$

* Net recombination rate:

$$
\begin{aligned}
& x_{e} \simeq 1-x_{1 s} \rightarrow \dot{x}_{e} \simeq-\dot{x}_{1 s}=-\dot{x}_{1 s \rightarrow 2 s} \\
& +\sum_{n, l>1 s} A_{n 1}^{l 0} P_{n 1}^{l 0}\left\{\frac{g_{n l}}{2} f_{n 1}^{+} x_{1 s}-\left(1+f_{n 1}^{+}\right) x_{n l}\right\}
\end{aligned}
$$

RADIATION FIELD: BLACK BODY +

* Escape probability treated in Sobolev approx.

$$
\begin{aligned}
& P_{n, n^{\prime}}^{l, l^{\prime}}=\frac{1-e^{-\tau_{s}}}{\tau_{s}} \\
& \tau_{s}=\frac{c^{3} n_{\mathrm{H}}}{8 \pi H \nu_{n n^{\prime}}^{3}} A_{n n^{\prime}}^{l l^{\prime}}\left[\frac{g_{n^{\prime}}^{l^{\prime}}}{g_{n}^{l}} x_{n}^{l}-x_{n^{\prime}}^{l^{\prime}}\right] \\
& \mathcal{R}\left(\nu, \nu^{\prime}\right)=\phi(\nu) \phi\left(\nu^{\prime}\right) \quad \frac{v_{\text {th }}}{H(z)} \ll \lambda
\end{aligned}
$$

* Excess line photons injected into radiation field
* Ongoing work by collabs and others uses FP eqn. to obtain evolution of $f(\nu)$ more generally, including:
* Atomic recoil/diffusion,
* Time-dependence of problem,
* Coherent scattering,
* Overlap of higher-order Lyman lines, \longrightarrow Analytic corr. to Sobolev, soon to be in RecSparse
* Higher 2γ decay
* Ultimate goal is to combine all new atomic physics effect in one fast recombination code

STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\vec{s}
$$

STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\vec{s} \vec{x}=\left(\begin{array}{c}
\vec{x}_{0} \\
\vec{x}_{1} \\
\ldots \\
\vec{x}_{n_{\max }-1}
\end{array}\right)
$$

STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\vec{s}
$$

For state 1, includes BB transitions out of 1 to all other 1", photo-ionization, 2γ transitions to ground state

STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathrm{R} \vec{x}+\vec{s}
$$

For state 1, includes BB transitions into 1 from all other l'

STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\hat{S}
$$

- Includes recombination to l, 1 and 2γ transitions from ground state

STEADY-STATE FOR EXCITED LEVELS

For $\mathrm{n}>1, \quad t_{\text {rec }}^{-1} \sim 10^{-12} s^{-1} \ll \mathbf{R}, \vec{s} \rightarrow-\vec{x} \simeq \mathbf{R}^{-1} \vec{s}$
$\ldots \lesssim 1 \mathrm{~s}^{-1}(\mathrm{e} . \mathrm{g}$ Lyman- $\alpha)$

* Evolution equations nay be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\vec{s}
$$

RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

* Matrix is $\sim n_{\max }^{2} \times n_{\max }^{2}$
* Brute force would require $\mathrm{A} n_{\max }^{6} \sim 10^{5} \mathrm{~s}$ for $n_{\max }=200$ for a single time step
* Dipole selection rules: $\Delta l= \pm 1$ $\mathrm{M}_{l, l-1} \vec{x}_{l-1}+\mathbf{M}_{l, l} \vec{x}_{l}+\mathbf{M}_{l, l+1} \vec{x}_{l+1}=\vec{s}_{l}$

* Physics imposes sparseness on the problem. Solved in closed form to yield algebraic $\vec{x}_{l_{\max }}$, then \vec{x}_{l} in terms of \vec{x}_{l+1}

RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

* Einstein coefficients to states with $n>n_{\max }$ are set $A=0$: more later!
* RecSparse generates rec. history with 10^{-8} precision, with computation time $\sim \mathrm{n}_{\max }{ }^{2.5}$ Huge improvement!
* Case of $n_{\max }=100$ runs in less than a day, $n_{\max }=200$ takes ~ 4 days.

FORBIDDEN TRANSITIONS AND RECOMBINATION

* Higher-n 2γ transitions in H important at 7- σ for Planck (TT/EE) data analysis (Hirata 2008, Kholupenko 2006)
* Some forbidden transitions are important in Helium recombination (Dubrovich 2005, Lewis 2006) and would bias cosmological parameter estimation.
* Unfinished business: Are other forbidden transitions in hydrogen important, particularly for Planck data analysis?

QUADRUPOLE TRANSITIONS AND RECOMBINATION

* Ground-state electric quadrupole (E2) lines are optically thick!

$$
\begin{aligned}
& R \propto A P \propto A / \tau \text { if } \tau \gg 1 \\
& \tau \propto A \rightarrow R \rightarrow A / A \rightarrow \mathrm{const}
\end{aligned}
$$

* Coupling to ground state will overwhelmingly dominate:

$$
\frac{A_{n, 2 \rightarrow 1,0}^{\text {quad }}}{A_{n, 2 \rightarrow m, 0}^{\text {quad }}} \propto \frac{\omega_{n 1}^{5}}{\omega_{n m}^{5}}=\left(\frac{1-\frac{1}{n^{2}}}{\frac{1}{m^{2}}-\frac{1}{n^{2}}}\right)^{5} \geq 1024 \text { if } m \geq 2
$$

* Magnetic dipole rates suppressed by several more orders of magnitude
* Hirata, Switzer, Kholupenko, others have considered other `forbidden’ processes, two-photon processes in H, E2 transitions in He

QUADRUPOLE TRANSITIONS AND RECOMBINATION

* Rates obtained using algebra of Coulomb w.f. (Hey 1995) and checked with WKB
* Lyman lines are optically thick, so $n d \rightarrow 1 s$ immediately followed by $1 s \rightarrow n p$, so this can be treated as an effective $d \rightarrow p$ process with rate $A_{n d \rightarrow 1 s} x_{n d}$.
* Same sparsity pattern of rate matrix, similar to l-changing collisions
* Detailed balance yields net rate

$$
R_{n d \rightarrow n p}^{\mathrm{quad}}=A_{n d \rightarrow 1 s}\left(x_{n d}-\frac{5}{3} x_{n p}\right)
$$

RESULTS: STATE OF THE GAS

DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

> Lower I states can easily cascade down, and are relatively under-populated

DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

RecSparse ${ }^{1}$

($=0$ can't cascade down, so states are not as under-populated

DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

 outpuł

Higher I are bottlenecked by $\Delta l= \pm 1$ (over-pop)

DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

Chluba/Rubino-Martin/Sunyaev 2006

Highest I states recombine inefficiently, and are under-populated

DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

l-substates are highly out of Boltzmann eqb'm at late times

DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

WHAT IS THE ORIGIN OF THE L=2 DIP?

$$
A_{\mathrm{nd} \rightarrow 2 \mathrm{p}}>A_{\mathrm{np} \rightarrow 2 \mathrm{~s}}>A_{\mathrm{ns} \rightarrow 2 \mathrm{p}}
$$

* $\mathrm{l}=2$ depopulates more rapidly than $\mathrm{l}=1$ for higher $(\mathrm{n}>2)$ excited states
* We can test if this explains the dip at $1=2$ by running the code with these Balmer transitions the blip should move to $l=1$

L-SUBSTATE POPULATIONS, BALMER LINES OFF

Dip moves as expected when Balmer lines are off!

ATOMIC COLLISIONS

$n_{\max }=100$

* 1 -changing collisions bring 1 -substates closer to statistical equilibrium (SE)
* Being closer to SE speeds up rec. by mitigating high-l bottleneck (Chluba, Rubino Martin, Sunyaev 2006)
* Theoretical collision rates unknown to factors of 2 !

$$
\begin{aligned}
& \text { * } b<a_{0} n^{2} \rightarrow \text { multi-body QM! } \\
& t_{\text {pass }}<t_{\text {orbit }} \rightarrow \text { Impulse approximation breaks down! }
\end{aligned}
$$

* Next we'll include them to see if we need to model rates better

DEVIATIONS FROM BOLTZMANN EQUILIBRIUM: DIFFERENT N-SHELLS

* No inversion relative to $\mathrm{n}=2$ (just-over population)
* Population inversion seen between some excited states: Does radiation stay coherent? Does recombination mase? Stay tuned
* Dense regions may mase more efficiently: maser spots as probe of l.s.s at early times? (Spaans and Norman 1997)

DEVIATIONS FROM SAHA EQUILIBRIUM

HUGE DEVIATIONS FROM SAHA EQD

* $\mathrm{n}=1$ suppressed due to freeze-out of x_{e}
* Remaining levels 'try' to remain in Boltzmann eq. with $\mathrm{n}=2$
* Super-Boltz effects and two- γ transitions ($\mathrm{n}=1 \longrightarrow \mathrm{n}=2$) yield less suppression for $\mathrm{n}>1$
* Effect larger at late times (low z) as rates fall

DEVIATIONS FROM SAHA EQUILIBRIUM

HUGE DEVIATIONS FROM SAHA EQ!

* Effect of states with $\mathrm{n}>$ could be approximated using asymptotic Einstein coeffs. and Saha eq. populations: but Saha is more elusive at high n /late times.
* At $\mathrm{z}=200$, we estimate $\mathrm{n}_{\max } \sim 1000$ needed, unless collisions included

RESULTS: RECOMBINATION HISTORIES

RESULTS: RECOMBINATION HISTORIES INCLUDING HIGH-N

* $x_{e}(z)$ falls with increasing $n_{\max }=10 \rightarrow 200$, as expected.
* Rec Rate>downward BB Rate> Ionization, upward BB rate
* For $n_{\max }=100$, code computes in only 2 hours

RESULTS: RECOMBINATION HISTORIES INCLUDING HIGH-N

* Relative convergence is not the same thing as absolute convergence: Want to see Saha asymptote and impose well-motivated cutoff!
* Collisions could help
* These are lower limits to the actual error
* $\mathrm{n}_{\max }=250$ and $\mathrm{n}_{\max }=300$ under way to further test convergence (more time consuming)

RESULTS: RECOMBINATION WITH HYDROGEN

BUILDING INTUITION FOR THE EFFECT OF E2 TRANSITIONS

$$
R_{n d \rightarrow n p}^{\text {quad }}=A_{n d \rightarrow 1 s}\left(x_{n d}-\frac{5}{3} x_{n p}\right)
$$

BUILDING INTUITION FOR THE EFFECT OF E2 TRANSITIONS

Sub-Dominant decay channel to gs, slows rec down rel. to $n<5$

$$
R_{n d \rightarrow n p}^{\text {quad }}=A_{n d \rightarrow 1 s}\left(x_{n d}-\frac{5}{3} x_{n p}\right)
$$

$n \geq 5$, early times

BUILDING INTUITION FOR THE EFFECT OF E2 TRANSITIONS

Dominant decay channel to gs, speeds up rec

$$
R_{n d \rightarrow n p}^{\text {quad }}=A_{n d \rightarrow 1 s}\left(x_{n d}-\frac{5}{3} x_{n p}\right)
$$

All n, late times

RESULTS: TT $C_{l} s$ WITH HIGH-N STATES

RESULTS: EE $C_{l} s$ WITH HIGH-N STATES

RESULTS: TEMPERATURE (TT) $C_{l} s$ WITH HYDROGEN QUADRUPOLES,

> Bulk of integral from late times, higher $\mathrm{n}_{\max } \rightarrow$ lower x_{e} \rightarrow lower $\tau \rightarrow$ higher $e^{-2 \tau} \rightarrow$ higher C_{l}

RESULTS: TEMPERATURE (TT) $C_{l} s$ WITH HYDROGEN QUADRUPOLES,

> Bulk of integral from late times, higher $\mathrm{n}_{\max } \rightarrow$ lower x_{e} \rightarrow lower $\tau \rightarrow$ higher $e^{-2 \tau} \rightarrow$ higher C_{l}

Overall effect is negligible for CMB experiments!

RESULTS: POLARIZATION (EE) $C_{l} s$ WITH HYDROGEN QUADRUPOLES

Bulk of integral from late times, higher $\mathrm{n}_{\max } \rightarrow$ lower x_{e} \rightarrow lower $\tau \rightarrow$ higher $e^{-2 \tau} \rightarrow$ higher C_{l}

RESULTS: POLARIZATION (EE) $C_{l} s$ WITH HYDROGEN QUADRUPOLES

Bulk of integral from late times, higher $\mathrm{n}_{\max } \rightarrow$ lower x_{e} \rightarrow lower $\tau \rightarrow$ higher $e^{-2 \tau} \rightarrow$ higher C_{l}

CONVERGENCE

* Relative error well described by power law at high $n_{\max }$

$$
\Delta x_{e} / x_{e} \propto n_{\max }^{-1.9}
$$

* Can extrapolate to absolute error

THE UPSHOT FOR COSMOLOGY

* Can explore effect on overall Planck likelihood analysis

$$
\begin{gathered}
Z^{2}=\sum_{l l^{\prime}, X, Y} F_{l l^{\prime}} \Delta C_{l}^{\mathrm{X}} \Delta C_{l}^{\mathrm{Y}} \\
Z=1.8 \text { if } n_{\max }=64 \\
Z=0.50 \text { if } n_{\max }=128 \\
Z=0.14 \text { if } n_{\max }=250
\end{gathered}
$$

* Parameter biases can be estimated in Fisher formalism

$$
\begin{array}{r}
\Delta \alpha^{i}=\mathcal{F}_{i j}^{-1} B_{j} \\
B_{j}=\sum_{l, l^{\prime}, X, Y} \frac{\partial C_{l}^{X}}{d \alpha^{j}} F_{l l^{\prime}} \Delta C_{l^{\prime}}^{Y}
\end{array}
$$

WRAPPING UP

* RecSparse: a new tool for MLA recombination calculations (watch arXiv in coming weeks for a paper on these results)
* Highly excited levels ($\mathrm{n} \sim 64$ and higher) are relevant for CMB data analysis
* E2 transitions in H are not relevant for CMB data analysis
* Future work:
* Include line-overlap
* Develop cutoff method for excluded levels
* Generalize RecSparse to calc. rec. line. spectra
* Compute and include collisional rates
* Monte-Carlo analyses
* Cosmological masers (homogeneous and perturbed)

Bound-free rates

* Using continuum wave functions, bound-free rates are obtained (Burgess 1957)
* Bound-free matrix elements satisfy a convenient recursion relation:
- Matrix elements compared with Burgess 1965 (5 digits) and with WKB approximation (5\%):
- At each temperature, thermal recombination/ionization rates obtained using 11point Newton-Cotes formula, agreement with Burgess to 4 published digits

BB Rate coefficients: verification

- WKB estimate of matrix elements $\quad \rho\left(n^{\prime} l^{\prime}, n l\right)=a_{0} n^{2} \int_{-\pi}^{\pi} d \tau e^{i \Omega \tau}(1+\cos \eta)$

$$
\Omega=\omega_{n}-\omega_{n^{\prime}}
$$

Fourier transform of classical orbit! Application of correspondence

$$
\begin{array}{r}
r=r_{\max }(1+\cos \eta) / 2 \\
\tau=\eta+\sin \eta
\end{array}
$$ principle!

$$
\begin{array}{r}
\rho^{\text {dipole }}\left(n, l, n^{\prime}, l^{\prime}\right)=\frac{n_{c}^{2}}{s}\left\{J_{s-1}(s \epsilon)-\frac{1 \mp \sqrt{1-\epsilon^{2}}}{\epsilon} J_{s}(s \epsilon)\right\} \\
\epsilon=\left(1-\frac{l(l+1)}{n^{2}}\right)^{1 / 2} \\
s=n-n^{\prime}
\end{array}
$$

- Radial matrix elements checked against WKB (10\%), published rates of Brocklehurst (1971), Green, Rush, and Chandler (1967) (agreement to their published 4 digits)

Quadrupole rates: basic formalism

$$
*_{A_{a}, l_{a} \rightarrow n_{b}, l_{b}}^{\text {quad }}=\frac{\alpha}{15} \frac{1}{2 l_{a}+1} \frac{\omega_{a b}^{5}}{c^{4}}\left\langle l_{a}\left\|C^{(2)}\right\| l_{b}\right\rangle^{2}\left({ }^{2} R_{n_{b} l_{b}}^{n_{a} l_{a}}\right)^{2}
$$

- Reduced matrix element evaluated using Wigner 3J symbols:

$$
\left\langle l_{a}\left\|C^{(2)}\right\| l_{b}\right\rangle=(-1)^{l_{a}} \sqrt{\left(2 l_{a}+1\right)\left(2 l_{b}+1\right)}\left(\begin{array}{ccc}
l_{a} & 2 & l_{b} \\
0 & 0 & 0
\end{array}\right)
$$

- Radial matrix element evaluated using operator methods

$$
{ }^{2} R_{n_{b} l_{b}}^{n_{a} l_{a}} \equiv \int_{0}^{\infty} r^{4} R_{n_{a} l_{a}}(r) R_{n_{b} l_{b}}(r) d r
$$

Quadrapole rates: Operator algebra

* Radial Schrödinger equation can be factored to
yield:

$$
\begin{aligned}
-\Omega_{n l}=\frac{1}{l A_{n l}}[& \left.1-l\left(\frac{d}{d r}+\frac{l+1}{r}\right)\right] \quad{ }^{+} \Omega_{n l}=\frac{1}{l A_{n l}}\left[1+l\left(\frac{d}{d r}-\frac{l-1}{r}\right)\right] \\
& -\Omega_{n l} R_{n l}(r)=R_{n l-1}(r) \quad A_{n l}=\frac{\sqrt{n^{2}-l^{2}}}{n l} \\
& +\Omega_{n l-1} R_{n l}(r)=R_{n l}(r) \quad A_{n}
\end{aligned}
$$

- This algebra can be applied to radial matrix elements:

Quadrapole rates: Operator algebra

* Radial Schrödinger equation can be factored to
yield:

$$
\begin{aligned}
-\Omega_{n l}=\frac{1}{l A_{n l}}[& \left.1-l\left(\frac{d}{d r}+\frac{l+1}{r}\right)\right] \quad{ }^{+} \Omega_{n l}=\frac{1}{l A_{n l}}\left[1+l\left(\frac{d}{d r}-\frac{l-1}{r}\right)\right] \\
& -\Omega_{n l} R_{n l}(r)=R_{n l-1}(r) \quad A_{n l}=\frac{\sqrt{n^{2}-l^{2}}}{n l} \\
& +\Omega_{n l-1} R_{n l}(r)=R_{n l}(r) \quad A_{n}
\end{aligned}
$$

- This algebra can be applied to radial matrix elements:

$$
\begin{aligned}
& { }^{2} R_{n^{\prime} l-1}^{n l-1}=\frac{1}{A_{n l}}\left\{A_{n^{\prime} l^{2}}^{2} R_{n^{\prime} l}^{n l}+2^{(1)} R_{n^{\prime} l-1}^{n l}\right\} \\
& { }^{(2)} R_{n^{\prime} n^{\prime}-1}^{n n^{\prime}-1}={\frac{2 n n^{\prime}}{{\sqrt{n^{2}-n^{\prime 2}}}^{(1)}} R_{n}^{n n^{\prime}-1}}_{\text {n }}
\end{aligned}
$$

Diagonal!

Quadrapole rates: Operator algebra

* Radial Schrödinger equation can be factored to yield:

$$
\begin{aligned}
-\Omega_{n l}=\frac{1}{l A_{n l}}[& \left.1-l\left(\frac{d}{d r}+\frac{l+1}{r}\right)\right] \quad+\Omega_{n l}=\frac{1}{l A_{n l}}\left[1+l\left(\frac{d}{d r}-\frac{l-1}{r}\right)\right] \\
& -\Omega_{n l} R_{n l}(r)=R_{n l-1}(r) \quad A_{n l}=\frac{\sqrt{n^{2}-l^{2}}}{n l} \\
& +\Omega_{n l-1} R_{n l}(r)=R_{n l}(r) \quad A_{n}
\end{aligned}
$$

- This algebra can be applied to radial matrix elements:
$l(2 l+3) A_{n^{\prime} l}{ }^{(2)} R_{n^{\prime}}^{n} l+1=(2 l+1)(l+2) A_{n l+2}{ }^{(2)} R_{n^{\prime} l}^{n} l+2+2(l+1) A_{n^{\prime}} l+1{ }^{(2)} R_{n^{\prime}}^{n l+1} l+$
$2(2 l+1)(3 l+5)^{(1)} R_{n^{\prime} l}^{n l+1} \quad\left(1 \leq l \leq n^{\prime}-1\right)$
(2) $R_{n^{\prime}}^{n} n_{n^{\prime}+1}^{\prime-1}=0$
(2) $R_{n^{\prime}}^{n} n^{n^{\prime}+1}=(-1)^{n-n^{\prime}} 2^{2 n^{\prime}+4}\left[\frac{\left(n+n^{\prime}+1\right)!}{\left(n-n^{\prime}-2\right)!\left(2 n^{\prime}-1\right)!}\right]^{1 / 2} n^{\prime}\left(n n^{\prime}\right)^{n^{\prime}+3} \frac{\left(n-n^{\prime}\right)^{n-n^{\prime}-3}}{\left(n+n^{\prime}\right)^{n+n^{\prime}+3}}$

