

arXiv:0711.1352 Accepted for publication in Phys. Rev. D.

Cosmological axion constraints in non-standard thermal histories

Daniel Grin

Collaborators: Tristan Smith and Marc Kamionkowski

Outline:

- * Cosmological constraints to hot thermal axions
- * Non-standard thermal histories
- * Constraints in non-standard thermal histories are *significantly* relaxed!
- * Future work

Axions

* Axions have a two-photon coupling (Raffelt 1996, Kaplan 1985)

$$g_{a\gamma\gamma} = -\frac{3\alpha}{8\pi f_a} \xi \quad \xi \equiv \frac{4}{3} \left\{ E/N - \frac{2(4+r)}{3(1+r)} \right\} \quad r = m_u/m_d$$

- * Most experimental searches depend on two-photon coupling, e.g. completed telescope search at VLT in *Grin et al.*, *Phys. Rev. D 75*, 105018 (2007), astro-ph/0611502 and forthcoming more sensitive VLT search. If ξ vanishes, constraints are lifted!
- * If $m_{\rm a} \gtrsim 10^{-2}~{\rm eV}$, axions are produced thermally, yielding subdominant cosmological population of Hot axions

$$\Omega_{\rm a}h^2 \simeq rac{m_{
m a}}{130~{
m eV}} \left(rac{10}{g_{*_{
m S},{
m F}}}
ight)$$

These can be probed using cosmological tests!

Hot axion production at early times

Axion Production (Chang and Choi 1993):

Hot axion production at early times

Axion Production:

* Axions produced through interactions (standard hadronic axions) between non-relativistic pions in chemical equilibrium with rate

$$\Gamma \sim n_{\pi} \langle \sigma v \rangle = \frac{T^2 m_{\rm a}^2 (1 - r)^2}{9r f_{\pi}^4 m_{\pi}^2} \left(\frac{m_{\pi} T}{2\pi}\right)^{3/2} e^{-m_{\pi}/T}$$
 $r = m_u/m_d$

Hot axion production at early times

Axion Production:

* Axions produced through interactions (standard hadronic axions) between non-relativistic pions in chemical equilibrium with rate

$$\Gamma \sim n_{\pi} \langle \sigma v \rangle = \frac{T^2 m_{\rm a}^2 (1 - r)^2}{9r f_{\pi}^4 m_{\pi}^2} \left(\frac{m_{\pi} T}{2\pi}\right)^{3/2} e^{-m_{\pi}/T}$$
 $r = m_u/m_d$

* Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$

- * Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$
- * SDSS galaxy P(k) and WMAP1 yield exclusion region (Hannestad et al. 2004)

- * Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$
- * SDSS galaxy P(k) and WMAP1 yield exclusion region (Hannestad et al. 2004)
- * Need $g_{*s,F} \gtrsim 87$ to agree with data

$$\frac{T_{\rm a}}{T_{\nu}} \simeq \left(\frac{10.75}{g_{*_{\rm S},\rm F}}\right)^{1/3}$$

- * Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$
- * SDSS galaxy P(k) and WMAP1 yield exclusion region (Hannestad et al. 2004)
- * Need $g_{*s,F} \gtrsim 87$ to agree with data
- * 2D constraints can be applied to our two-parameter $(m_{\rm a}, T_{\rm rh})$ model

$$\frac{T_{\rm a}}{T_{\nu}} \simeq \left(\frac{10.75}{g_{*_{\rm S},\rm F}}\right)^{1/3}$$

- * Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$
- * SDSS galaxy P(k) and WMAP1 yield exclusion region (Hannestad et al. 2004)
- * Need $g_{*s,F} \gtrsim 87$ to agree with data
- * 2D constraints can be applied to our two-parameter $(m_{\rm a}, T_{\rm rh})$ model

Low-temperature reheating (LTR)

- * We do not know exact thermal history before BBN. BBN is ok if $T_{\rm rh} \gtrsim 4$ MeV. Also, harmful relics are washed out for low $T_{\rm rh}$ (Nanopoulos and others).
- * Simple model in which $\phi \to \text{radiation}$ is responsible for extended reheating phase (Giudice, Kolb, Riotto 2001)

$$\frac{d\rho_{\rm R}}{dt} + 4H\rho_{\rm R} = \Gamma_{\phi}\rho_{\phi} \qquad \frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi}$$

* Decay products thermalize and entropy generated

$$T = \left[\frac{30}{\pi^2 g_*(T)}\right]^{1/4} \rho_{\rm R}^{1/4}$$

* Past work considered effects on other DM candidates and nonthermal axions (Giudice, Yaguna 2007). *New work: LSS/CMB/total density constraints to hot axions in LTR*

Low-temperature reheating (LTR)

* Entropy generation slows down temperature decrease

$$T \propto a^{-3/8}$$
 until $T \lesssim T_{\rm rh}$, then $T \propto a^{-1}$

* Hubble expansion is faster

$$H \propto T^4$$
 until $T \lesssim T_{\rm rh}$, then $H \propto T^2$

Axion freeze out in LTR

- * Faster expansion: freeze-out is earlier
- * When $T_{\rm rh}\gg T_{{
 m F},0}$, standard results are recovered
- * $\Gamma \propto f_{
 m a}^{-2} \propto m_{
 m a}^2$, so more massive axions freeze out later

Axion abundance in LTR

- * Higher $T_{\rm F}$ means higher initial equilibrium abundance
- * Entropy generation dramatically suppresses abundances

Axion temperature in LTR

st Entropy generation leads to $T_{
m a} \propto a^{-1}$, while $T_{\gamma} \propto a^{-3/8}$:

$$\frac{T_{\rm a}}{T_{\nu}} pprox (10.75/g_{*_{
m S},{
m F}})^{1/3}, \quad \text{if } T_{
m F} < T_{
m rh}.$$

$$\left(\frac{T_a}{T_{\nu}} \simeq \left(\frac{11}{4}\right)^{1/3} \left(\frac{T_{
m rh}}{T_{
m F}}\right)^{5/3} \left(\frac{g_{*,{
m RH}}^2 g_{*{
m S},0}}{g_{*,{
m F}}^2 g_{*{
m S},{
m RH}}}\right)^{1/3}$$
 if $T_{
m F} > T_{
m rh}$.

* Axions non-relativistic earlier: Smaller free-streaming length!

$$\lambda_{\rm fs} \simeq rac{196 \; {
m Mpc}}{m_{
m a,eV}} \left(rac{T_{
m a}}{T_{
u}}
ight) \left\{1 + \ln\left[0.45 m_{
m a,eV}\left(rac{T_{
u}}{T_{
m a}}
ight)
ight]
ight\}.$$

* $\lambda_{\rm fs} \, (T_{\rm rh}, m_{\rm a}) \, \& \, \Omega_{\rm a} h^2 \, (T_{\rm rh}, m_{\rm a})$ calculated to trace out allowed region

Future surveys

- * LSST predicted to reach $\Delta P/P \sim 10^{-2}$ for a sample population similar to SDSS main
- * Assuming 21-cm or Ly α observations on very small comoving scales, limits at low reheating temperatures may be improved

Future surveys

* LSST predicted to reach $\Delta P/P \sim 10^{-2}$ for a sample population similar to SDSS main

* Assuming 21-cm or Ly α observations on very small comoving scales, limits at low reheating temperatures may be improved

Future surveys

- * LSST predicted to reach $\Delta P/P \sim 10^{-2}$ for a sample population similar to SDSS main
- * Assuming 21-cm or Ly α observations on very small comoving scales, limits at low reheating temperatures may be improved

Future limits from abundance of ⁴He

- * Axions are relativistic at T~ 1 MeV and contribute to $N_{\nu}^{\rm eff}$
- * Entropy generation suppresses axionic contribution to $N_{\nu}^{\rm eff}$
- * N_{ν}^{eff} contributes to H(T) during radiation domination, setting abundance of 4 He
- * ⁴He affects CMB TT, TE, and EE spectra: CMBPOL constraints!

Conclusions

- * Low-temperature reheating models drastically relax cosmological axion constraints
- * Future LSS surveys will extend axion constraints to models with lower $T_{
 m rh}$
- * Future CMB experiments may impose additional interesting LTR+axion constraints through helium abundances

2 axion populations: Cold axions

- st Before PQ symmetry breaking, heta is generically displaced from vacuum value
- * EOM: $\ddot{\overline{\theta}} + 3H\overline{\theta} + m_{\rm a}^2(T)\overline{\theta} = 0$ $m_{\rm a}(T) \simeq 0.1 m_{\rm a}(T = 0) (\Lambda_{\rm QCD}/T)^{3.7}$
- * After $m_{\rm a}\left(T\right)\gtrsim 3H\left(T\right)$, coherent oscillations begin, leading to $n_{\rm a}\propto a^{-3}$
- * Relic abundance $\Omega_{\rm a}h^2 \simeq 0.13 \times g\left(\theta_0\right) \left(m_{\rm a}/10^{-5}{\rm eV}\right)^{-1.18}$
- * Particles are cold

Subtleties

- * Non-equilibrium production
- * $T_{\rm F} \gtrsim 200~{\rm MeV}$ necessitates use of different cross sections
- * At low values of m_a , coherent oscillation may become important
- * For very low $T_{\rm rh}$, ν may not have time to thermalize, and π may fall out of equilibrium
- * All these effects negligible for $T_{\rm rh} \gtrsim 10~{
 m MeV}$ and $m_{\rm a} \gtrsim 0.6~{
 m eV}$

Axionic contribution to pre-BBN radiation energy density in LTR

- * Axions are relativistic at T~ 1 MeV and contribute to $N_{\nu}^{\rm eff}$
- * Entropy generation suppresses the axionic contribution to N_{ν}^{eff}

$$N_{\nu}^{\text{eff}} \equiv \left(\frac{\rho_{\text{a}} + \rho_{\nu}}{\rho_{\gamma}}\right) \left(\frac{8}{7}\right) \left(\frac{11}{4}\right)^{4/3},$$

$$N_{\nu}^{\text{eff}} = 3 + \frac{4}{7} \left(\frac{43}{4}\right)^{4/3} \Psi \left(T_{\text{F}}/T_{\text{rh}}\right),$$

More details on Helium

* $N_{
u}^{
m eff}$ contributes to H(T) during radiation domination, setting the abundance of $^4{
m He}$:

- * For fixed $\eta = \rho_{\rm b}/\rho_{\gamma}$, $\Delta N_{\nu}^{\rm eff} = \frac{\Delta Y_p}{0.013}$ (Steigman 2007)
- * Folding in systematic errors, current measurements yield constraint $N_{
 u}^{
 m eff} \leq 3.8$
- \star $Y_{\rm p}$ affects ionization history, and thus CMB TT, TE, and EE spectra

What are axions?

- * Axions solve the strong CP problem (Peccei and Quinn 1977, Weinberg 1978, Wilczek 1978)
- Axions interact weakly with SM particles $\Gamma, \sigma \propto \alpha^2$
- * Axions have a two-photon coupling (Raffelt 1996, Kaplan 1985)

$$g_{a\gamma\gamma} = -\frac{3\alpha}{8\pi f_a} \xi$$
 $\xi \equiv \frac{4}{3} \left\{ E/N - \frac{2(4+r)}{3(1+r)} \right\}$ $r = m_u/m_d$

Two populations of axions (M. Turner, 1986, 1987):

Cold (nonthermal) axions

$$m_{\rm a} \lesssim 10^{-2} \text{ eV}$$

Hot (thermal) axions

$$m_{\rm a} \gtrsim 10^{-2} \text{ eV}$$

$$\Omega_{\rm a} h^2 \simeq 0.13 \left(\frac{m_{\rm a}}{10^{-5} \ {\rm eV}} \right)^{-1.18}$$
 $\Omega_{\rm a} h^2 \simeq \frac{m_{\rm a}}{130 \ {\rm eV}} \left(\frac{10}{g_{*\rm s.F}} \right)$

$$\Omega_{
m a} h^2 \simeq rac{m_{
m a}}{130 {
m \ eV}} \left(rac{10}{g_{*_{
m S},{
m F}}}
ight)$$

Recent VLT search: Phys. Rev. D 75, 105018 (2007): Grin et al. - Telescope search for decaying relic axions (4.5-7.7 eV), arXiv:astro-ph/0611502

Upcoming VLT search: Grin et al. - Telescope search for decaying relic axions (8-20 eV, data recently taken, axion search underway!)

Many astrophysical and experimental constraints to axions depend on two-photon coupling ξ and may be evaded!!

Axionic contribution to pre-BBN radiation energy density in LTR

- * Axions are relativistic at T~ 1 MeV and contribute to $N_{\nu}^{\rm eff}$
- * Entropy generation suppresses the axionic contribution to N_{ν}^{eff}

$$N_{\nu}^{\text{eff}} \equiv \left(\frac{\rho_{\text{a}} + \rho_{\nu}}{\rho_{\gamma}}\right) \left(\frac{8}{7}\right) \left(\frac{11}{4}\right)^{4/3},$$

$$N_{\nu}^{\text{eff}} = 3 + \frac{4}{7} \left(\frac{43}{4}\right)^{4/3} \Psi \left(T_{\text{F}}/T_{\text{rh}}\right),$$

$$\Psi(y) \sim \begin{cases} \left[g_{*_{S}, \text{rh}} y^{5} \left(\frac{g_{*,F}}{g_{*,\text{rh}}} \right)^{2} - 1 \right]^{-4/3} & \text{if } y \gg 1, \\ \left[g_{*_{S},F} - 1 \right]^{-4/3} & \text{if } y \ll 1. \end{cases}$$

Kination

* During a kination epoch (typically pre-BBN), the energy density is dominated by the *kinetic* energy of a scalar field (Joyce 1997)

$$T/V = \dot{\phi}^2/2V(\phi) \gg 1 \to w = \frac{\dot{\phi}^2/2 - V(\phi)}{\dot{\phi}^2/2 + V(\phi)} \simeq 1$$
 $\rho \propto a^{-3(1+w)} \quad H \propto T^3$

- * Kination could ease along EW baryogenesis and be relevant in quintessential inflation
- * No entropy generation during kination
- * Analysis does not rely on details of kination models, general if $H = H_{\rm rad} \left(T/T_{\rm kin} \right) \, \, {
 m until} \, \, T_{\rm kin}, H = H_{\rm rad} \, \, {
 m afterwards}$
- * Past work considered neutralino abundance in kination models (Profumo and Ullio 2000, Pallis 2005, Gelmini et al. 2006). *New work:* LSS/CMB/total density constraints to hot axions in kination models

Axion abundance in kination

- * Higher $T_{\rm F}$ means higher initial equilibrium abundance
- * Entropy generation dramatically suppresses abundances
- * Kination yields a more modest reduction in $\Omega_{\rm a}h^2$

$$\Omega_{\rm a}h^2 = \frac{m_{\rm a,eV}}{130} \left(\frac{10}{g_{*\rm s,F}}\right)$$

Axion temperature in LTR/kination

st Entropy generation leads to $T_{
m a} \propto a^{-1}$, while $T_{\gamma} \propto a^{-3/8}$:

$$\frac{T_{\rm a}}{T_{\nu}} \approx (10.75/g_{*_{\rm S},{
m F}})^{1/3}, \quad \text{if } T_{
m F} < T_{
m rh}.$$

$$\left(\frac{T_a}{T_{\nu}} \simeq \left(\frac{11}{4}\right)^{1/3} \left(\frac{T_{
m rh}}{T_{
m F}}\right)^{5/3} \left(\frac{g_{*,{
m RH}}^2 g_{*{
m S},0}}{g_{*,{
m F}}^2 g_{*{
m S},{
m RH}}}\right)^{1/3} \quad {
m if} \ T_{
m F} > T_{
m rh}.$$

* Axions non-relativistic earlier: Smaller free-streaming length!

$$\lambda_{\rm fs} \simeq \frac{196 \; {
m Mpc}}{m_{
m a,eV}} \left(\frac{T_{
m a}}{T_{
u}}\right) \left\{1 + \ln\left[0.45 m_{
m a,eV}\left(\frac{T_{
u}}{T_{
m a}}\right)\right]\right\}.$$

* In the kination case, less dramatic changes

$$\frac{T_{\mathrm{a}}}{T_{\nu}} pprox (10.75/g_{*_{\mathrm{S}},\mathrm{F}})^{1/3}$$
, with different $g_{*_{\mathrm{S}},\mathrm{F}}$

- * For kination, new constraints less dramatically different: If $T_{\rm kin} \simeq 10~{
 m MeV}$, the allowed regions are $m_{
 m a} \lesssim 3.2~{
 m eV}$ and $17~{
 m eV} \lesssim m_{
 m a} \lesssim 26~{
 m eV}$.
- * If $T_{\rm kin} \gtrsim 110~{
 m MeV}$, standard results are recovered.