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Outline:

* Cosmological constraints to hot thermal axions
* Non-standard thermal histories
* Constraints in non-standard thermal histories are relaxed!

* Future work
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AX10NS

* Axions have a two-photon coupling (Raffelt 1996, Kaplan1985)

ga/y'y 87Tfa€ f {E/N—i%iii} T:mu/md

* Most experimental searches depend on two-photon coupling, e.g.
completed telescope search at VLT in Grin ef al., Phys. Rev. D 75,
105018 (2007), astro-ph /0611502 and forthcoming more sensitive VLT
search. If £ vanishes, constraints are lifted!

* If my = 1072 eV, axions are produced thermally, yielding sub-

Y

dominant cosmological population of Hot axions

These can be probed using cosmological tests!  3/14



Hot axion production at early times
Axion Production (Chang and Choi 1993):
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Hot axion production at early times

Axion Production:

* Axions produced through interactions (standard hadronic axions)
between non-relativistic pions in chemical equilibrium with rate
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Hot axion production at early times
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Axion Production:
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* Axions produced through interactions (standard hadronic axions)
between non-relativistic pions in chemical equilibrium with rate
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The physics of cosmological
axion constraints

* Axions are relativistic at early A

times, free stream and suppress 1.0
power by AP/P ~ —8Q, /O,
when \ < A\g
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The physics of cosmological
axion constraints

* Axions are relativistic at early
times, free stream and suppress
power by AP/P ~ —8Q,/Qy,
when \ < \g

* SDSS galaxy P(k) and WMAP1
yield exclusion region
(Hannestad et al. 2004)
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The physics of cosmological
axion constraints

* Axions are relativistic at early
times, free stream and suppress
power by AP/P ~ —8Q,/Qy,
when \ < \g

* SDSS galaxy P(k) and WMAP1
yield exclusion region
(Hannestad et al. 2004)

* Need ¢..r 2 87 toagree
with data
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The physics of cosmological
axion constraints

Axions are relativistic at early
times, free stream and suppress
power by AP/P ~ —8Q,/Qy,
when \ < \g

SDSS galaxy P(k) and WMAP1
yield exclusion region
(Hannestad et al. 2004)

Need ¢..F 2 87 toagree
with data

2D constraints can be applied to
our two-parameter (m,, Ty )
model
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The physics of cosmological
axion constraints

20F
Axions are relativistic at early |
times, free stream and suppress
power by AP/P ~ —8Q, /Oy,
when \ < \g

18]
E; 1.6:
"l
SDSS galaxy P(k) and WMAP1
yield exclusion region
(Hannestad et al. 2004)
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Need ¢..F 2 87 toagree
with data

2D constraints can be applied to
our two-parameter (m,, Ty )

model 5/14



Low-temperature reheating (LTR)

We do not know exact thermal history before BBN. BBN is ok if
Tin = 4 MeV. Also, harmful relics are washed out for low T}y
(Nanopoulos and others).

Simple model in which ¢ — radiation is responsible for extended
reheating phase (Giudice, Kolb, Riotto 2001)

Decay products thermalize and entropy generated

Past work considered effects on other DM candidates and non-
thermal axions (Giudice, Yaguna 2007) . New work: LSS5/CMB/total
density constraints to hot axions in LTR 6/14




Low-temperature reheatin
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* Entropy generation slows down temperature decrease

* Hubble expansion is faster
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Axion freeze out in LTR
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* When 1}, > 1F o, standard results are recovered
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* ' x fa_ 2 X mg , SO more massive axions freeze out later g /14



Axion abundance in LTR

* Higher I means higher ' T T
el T 1 E —
initial equilibrium abundance ;
* Entropy generation 10-1;_ .
dramatically suppresses 2°  F
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Axion temperature in LIR

—3/8.

% Entropy generation leads to T, o< @™ ', while T, o a

* Axions non-relativistic earlier: Smaller free-streaming length!
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New constraints in LTR

1000 * s (Trn, ma) & Qah2 (Trn, ma)

calculated to trace out
allowed region
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New constraints in LTR

1000 * Mg (Trn, ma) & Qah® (Ton, ma)

calculated to trace out
allowed region
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New constraints in LTR

1000 * )\fs (Trha ma) & Qah2 (Trh7 ma)

calculated to trace out
allowed region
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New constraints in LTR

1000 * )\fs (Trha ma) & Qah2 (Trh7 ma)

calculated to trace out
allowed region
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6, 35 MoV, X S A LSS constraints completely relaxed




surveys

* LSST predicted to reach
AP/P ~ 1072 for a sample
population similar to SDSS

main 1000 & E
*  Assuming 21-cm or Ly« > i
: 100 _
observations on very small ¢ -

comoving scales, limits at low

m

reheating temperatures may
be improved
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surveys
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* LSST predicted to reach
AP/P ~ 1072 for a sample
population similar to SDSS
main

Assuming 21-cm or Ly «
observations on very small
comoving scales, limits at low
reheating temperatures may
be improved

surveys
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Future limits from abundance of *He

| ' |
* Axions are relativistic at T~ 1 B Npmex
. eff 3.6 m =78 eV
MeV and contribute to [V, i ) i
. i =1.4 eV
* Entropy generation suppresses 34 T e i ; T‘
axionic contribution to N" =
. = 3.2 -_ Predicted CMBPol Sensitivity _-
* NS contributes to H(T)
during radiation domination,
setting abundance of *He 3 ]
* 4He affects CMB TT, TE, and EE N T

2.8 4

spectra: CMBPOL constraints! 10 100
T, (in MeV)
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Conclusions

* Low-temperature reheating models drastically
relax cosmological axion constraints

* Future LSS surveys will extend axion constraints
to models with lower 1,

* Future CMB experiments may impose
additional interesting LTR+axion constraints
through helium abundances
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2 axion populations: Cold axions

0
Before PQ symmetry breaking, f is generically displaced from vacuum value
EOM: é—I— SHO+m2(T)0=0 m,(T)~0.1m, (T =0) (AQCD/T)3'7

After m, (T') 2 3H (T'), coherent oscillations begin, leading to n, oc a™*

Relic abundance { Q,h% ~ 0.13 x g (6p) (ma/10_5e\7)_1'18

Particles are cold



Subtleties

Non-equilibrium production
Ty 2 200 MeV necessitates use of different cross sections
At low values of m,, coherent oscillation may become important

For very low I}y, ¥ may not have time to thermalize, and 7r may fall out of
equilibrium

All these effects negligible for T}, = 10 MeV and m, 2 0.6 eV



Axionic contribution to pre-BBN
radiation energy density in LTR

X Axions are relativisticat T~ 1 38

MeV and contribute to NV ﬁﬁ

the axionic contribution to N
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More details on Helium

T I T T I T T
B _————— eff max
3.6 [ mz=78eV Y 7
L | i\\ma=4.7 eV —14 eV :
34 1 Martd eV
N]e/ff 32| ! Predicted CMBPol Sensitivity _
3+ i
2.8 -I | 1 1 L1l
10 100
T, (in MeV)

* N, SH contributes to H (T") during radiation domination, setting the abundance of ‘He:

g _ Y

* ' = AVARSEES
For fixed 7] pb/,Oy, > E

(Steigman 2007)
* Folding in systematic errors, current measurements yield constraint N ﬁff < 3.8

* Yp affects ionization history, and thus CMB TT, TE, and EE spectra



What are axions?

* Axions solve the strong CP problem (Peccei and Quinn 1977,

Weinberg 1978, Wilczek 1978)

% Axions interact weakly with SM particles 1, 0 o

* Axions have a two-photon coupling (Raffelt 1996, Kaplan 1985)

3 T
i = =o€ 6= g {EN =TI r=mfm,

* Two populations of axions (M. Turner, 1986, 1987):

Cold (nonthermal) axions Hot (thermal) axions
ma <1072 eV m, 21077 eV



Axions: The big picture
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Axions: The big picture

Many astrophysical and experimental constraints to axions depend on
two-photon coupling & and may be evaded!!
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Axionic contribution to pre-BBN
radiation energy density in LTR

X Axions are relativisticat T~ 1 38

MeV and contribute to NV ﬁﬁ
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Kination

* During a kination epoch (typically pre-BBN), the energy density is
dominated by the /inetic energy of a scalar field (Joyce 1997)

* Kination could ease along EW baryogenesis and be relevant in
quintessential inflation

* No entropy generation during kination

* Analysis does not rely on details of kination models, general if

H = H.,q (T/Tyin) until Ty, H = H,.q afterwards

* Past work considered neutralino abundance in kination models
(Profumo and Ullio 2000, Pallis 2005, Gelmini et al. 2006). New work:
LSS/CMB/total density constraints to hot axions in kination models



Axion abundance in kination

* Higher 1 means higher
initial equilibrium abundance

* Entropy generation
dramatically suppresses
abundances

* Kination yields a more modest
reduction in 0, h*




Axion temperature in LTR / kination

—3/8.

% Entropy generation leads to T, o< @™ ', while T, o a

* Axions non-relativistic earlier: Smaller free-streaming length!

* In the kination case, less dramatic changes

T.

o (10.75/g.s,7)"?, with different g, F



constraints in LTR

* For kination, new constraints
less dramatically different:

If Ty, >~ 10 MeV, the allowed
regions are m, < 3.2 eV and

17 eV S my, S 26 eV.

* If Ti;n = 110 MeV, standard

Y

results are recovered.



