Cosmological Hydrogen RECOMBINATION:

 THE EFFECT OF HIGH-N STATES Daniel Grinin collaboration with Chris Hirata and Yacine Ali-Haïmoud Caltech

Paris Recombination Conference LPT Orsay, 09/07/09

OUTLINE

- The history of high-n and recombination
- Our tools: RecSparse
- High-n and Recombination histories
- Quadrupole transitions
- Quadrupole transitions and Recombination histories
- Results: Recombination histories, effects on CMB
- Ongoing work

EQUILIBRIUM ASSUMPTIONS

- Radiative eq. between different n-states

$$
\mathcal{N}_{n}=\mathcal{N}_{2} e^{-\left(E_{n}-E_{2}\right) / T}
$$

- Radiative/collisional eq. between different 1

$$
\mathcal{N}_{n l}=\mathcal{N}_{n} \frac{(2 l+1)}{n^{2}}
$$

- Matter in eq. with radiation due to Thompson scattering

$$
T_{m}=T_{\gamma} \text { since } \frac{\sigma_{T} a T_{T}^{4} c}{m_{e} c^{2}}<H(T)
$$

BREAKING THE NAIVE MODEL

- Radiation field is cool: Beltzmann-eq. of higher a
- Seager/Sasselov/Scott (2000) $\quad n_{\max }=300$ RecFAST!!!
- Equilibrium between l states
- Treated by Chluba et al. (2005) for $n_{\max }=100$
- Radiation and matter field fall out of eq.

$$
\dot{T}_{M}+2 H T_{m}=\frac{8 x_{e} \sigma_{\mathrm{T}} a T_{\gamma}^{4}}{3 m_{e} c\left(1+f_{\mathrm{He}}+x_{e}\right)}\left(T_{M}-T_{\gamma}\right)
$$

BREAKING THE NAIVE MODEL

- Radiation field is cool: Beltzmann eq. of higher n
- Treated by Seager et al. (2000) $n_{\max }=300$ RecFAST!!!
- Equilibrium between l states
- Treated by Chluba et al. (2005) for $n_{\max }=100$
- Beyond this, testing convergence with $n_{\max }$ is hard!

$$
t_{\text {compute }} \sim \mathcal{O}(\text { weeks })
$$

How to proceed if we want 0.1% accuracy in $x_{e}(z)$?

THE EFFECT OF RESOLVING l- SUBSTATES

- Putting free-electrons in 'bottlenecked' l-substates slows down the decay to 1s: Recombination is slower; Chluba, Rubino-Martin, Sunyaev 2006

BREAKING THE NAIVE MODEL

- Radiation field is cool: Beltzmann eq. of higher n
- Treated by Seager et al. (2000) $n_{\max }=300$ RecFAST!!!
- Eq. between l states: dipole selection bottleneck: $\Delta l= \pm 1$
- Treated by Chluba et al. (2005) for $n_{\max }=100$
- Beyond this, testing convergence with $n_{\max }$ is hard!

$$
t_{\text {compute }} \sim \mathcal{O}(\text { weeks })
$$

THE MULTI-LEVEL ATOM (MLA)

24.

- Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & =\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H} x_{e} x_{p}\left[1+f\left(E_{e}-E_{n}\right)\right] \alpha_{n l}\left(E_{\mathrm{e}}\right) \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{n l} f\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l^{\prime}}\left(1+f_{n n^{\prime}}\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime} l^{\prime}}}{g_{n l}} f_{n n^{\prime}} x_{n l}\right) P_{n n^{\prime}}^{l l^{\prime}}
$$

THE MULTI-LEVEL ATOM (MLA)

2. ne x

Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & =\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H x_{e} x_{p}\left[1+f\left(E_{e}-E_{n}\right)\right] \alpha_{n l}\left(E_{\mathrm{e}}\right)} \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{n l} f\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l l^{\prime}}\left(1+f_{n n^{\prime}}\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime} l^{\prime}}}{g_{n l}} f_{n n^{\prime}} x_{n l}\right) P_{n n^{\prime}}^{l^{\prime}}
$$

THE MULTI-LEVEL ATOM (MLA)

Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & =\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H} x_{e} x_{p}\left[1+f\left(E_{e}-E_{n}\right)\right] \alpha_{n l}\left(E_{\mathrm{e}}\right) \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{n l} f\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\begin{aligned}
& \dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l^{\prime}}\left(1+f_{n n^{\prime}}\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime} l^{\prime}}}{g_{n l}} f_{n n^{\prime}} x_{n l}\right) P_{n n^{\prime}}^{l l^{\prime}} \\
& \text { - Phase-space density blueward of line }
\end{aligned}
$$

- Escape probability of γ in liné

THE MULTI-LEVEL ATOM (MLA)

Stimulated emission/absorption

- Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & =\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H} x_{\mathrm{e}} x x_{\mathrm{l}} \downarrow+\left(f\left(E_{\mathrm{e}}-E_{n}\right)\right) \alpha_{n l}\left(E_{\mathrm{e}}\right) \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{n l} \ell\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\left.\dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l^{\prime}}\left(1+\left(f_{n n}\right)\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime} l^{\prime}}}{g_{n l}} f_{n n}\right) x_{n l}\right) P_{n n^{\prime}}^{l l^{\prime}}
$$

THE MULTI-LEVEL ATOM (MLA)

Spontaneous Emission

Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & \left.=\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H} x_{e} x_{p}(1)+f\left(E_{e}-E_{n}\right)\right] \alpha_{n l}\left(E_{\mathrm{e}}\right) \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{\eta l} f\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l l^{\prime}}\left(1+f_{n n^{\prime}}\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime} l^{\prime}}}{g_{n l}} f_{n n^{\prime}} x_{n l}\right) P_{n n^{\prime}}
$$

THE MULTI-LEVEL ATOM (MLA)

- Two photon transitions between $\mathrm{n}=1$ and $\mathrm{n}=2$ are included:

$$
\dot{x}_{2 s \rightarrow 1 s, 2 \gamma}=-\dot{x}_{1 s \rightarrow 2 s, 2 \gamma}=\Lambda_{2 s}\left(-x_{2 s}+x_{1 s} e^{-E_{2 s \rightarrow 1 s} / T_{\gamma}}\right)
$$

- Net recombination rate:

$$
\begin{aligned}
& x_{e} \simeq 1-x_{1 s} \rightarrow \dot{x}_{e} \simeq-\dot{x}_{1 s}=-\dot{x}_{1 s \rightarrow 2 s} \\
& +\sum_{n, l>1 s} A_{n 1}^{l 0} P_{n 1}^{l 0}\left\{\frac{g_{n l}}{2} f_{n 1}^{+} x_{1 s}-\left(1+f_{n 1}^{+}\right) x_{n l}\right\}
\end{aligned}
$$

BOUND-BOUND RATE COEFFICIENTS

- Bound-bound rates given by Fermi's golden rule and matrix element

$$
\begin{array}{r}
\rho\left(n^{\prime} l^{\prime}, n l\right)=\int_{0}^{\infty} u_{n^{\prime} l^{\prime}}(r) u_{n l}(r) r^{3} d r=\mathcal{C} \times
\end{array} \begin{array}{r}
\\
\hline
\end{array} F_{2,1}\left(-n+l+1,-n^{\prime}+l, 2 l, \frac{-4 n n^{\prime}}{\left(n-n^{\prime}\right)^{2}}\right) .
$$

- Power-series destabilizes at high-n, recursion relation used
- Rates are calculated, tabulated, and stored

BB RATE COEFFICIENTS: VERIFICATION

- WKB estimate of matrix elements $\rho\left(n^{\prime} l^{\prime}, n l\right)=a_{0} n^{2} \int_{-\pi}^{\pi} d \tau e^{i \Omega \tau}(1+\cos \eta)$

Fourier transform of classical orbit! Application of correspondence

$$
\Omega=\omega_{n}-\omega_{n^{\prime}}
$$

$$
r=r_{\max }(1+\cos \eta) / 2
$$

$$
\tau=\eta+\sin \eta
$$ principle!

$$
\begin{array}{r}
\rho^{\text {dipole }}\left(n, l, n^{\prime}, l^{\prime}\right)=\frac{n_{c}^{2}}{s}\left\{J_{s-1}(s \epsilon)-\frac{1 \mp \sqrt{1-\epsilon^{2}}}{\epsilon} J_{s}(s \epsilon)\right\} \\
\epsilon=\left(1-\frac{l(l+1)}{n^{2}}\right)^{1 / 2} \\
s=n-n^{\prime}
\end{array}
$$

- Radial matrix elements checked against WKB (10\%), published rates of Brocklehurst (1971), Green, Rush, and Chandler (1967) (agreement to their published 4 digits)

BOUND-FREE RATES

2he fed

- Using continuum wave functions, bound-free rates are obtained (Burgess 1957)
- Bound-free matrix elements satisfy a convenient recursion relation:

$$
\begin{gathered}
\rho\left(n, l, \kappa, l^{\prime}\right) \equiv \sqrt{\frac{(n+l)!}{(n-l-1)!} \prod_{s=0}^{l^{\prime}}\left(1+s^{2} \kappa^{2}\right)}(2 n)^{l-n} G(n, l, \kappa, n) \quad \kappa^{2}=K_{e} / \mathrm{Ryd} \\
G(n, l-2, \kappa, l-1)=\left[4 n^{2}-4 l^{2}+l(2 l-1)\left(1+n^{2} \kappa^{2}\right)\right] G(n, l-1, \kappa, l) \\
-4 n^{2}\left(n^{2}-l^{2}\right)\left[1+(l+1)^{2} \kappa^{2}\right] G(n, l, \kappa, l+1)
\end{gathered}
$$

- For each n, dipole BF rates tabulated for 550 values of κ in 11 logarithmic bins from $n^{2} \kappa^{2}=10^{-10} \rightarrow 4.96 \times 10^{8}$
- Matrix elements compared with Burgess 1965 (5 digits) and with WKB approximation (5\%): $\quad \rho(n, l, \kappa, l \pm 1) \simeq \frac{l^{2}}{\pi \sqrt{3} u n^{3 / 2}}\left\{K_{2 / 3}\left(u l^{3} / 3\right) \pm K_{1 / 3}\left(u l^{3} / 3\right)\right\}$

$$
u=\frac{1}{2}\left(\kappa^{2}+\frac{1}{n^{2}}\right)
$$

- At each temperature, thermal recombination/ionization rates obtained using 11point Newton-Cotes formula, agreement with Burgess to 4 published digits

RADIATION FIELD: BLACK BODY+

- Escape probability treated in Sobolev approx.

$$
\begin{aligned}
& P_{n, n^{\prime}}^{l, l^{\prime}}=\frac{1-e^{-\tau_{s}}}{\tau_{s}} \quad \tau_{s}=\frac{c^{3} n_{\mathrm{H}}}{8 \pi H \nu_{n n^{\prime}}^{3}} A_{n n^{\prime}}^{l^{\prime}}\left[\frac{g_{n^{\prime}}^{\prime \prime}}{g_{n}^{\prime}} x_{n}^{l}-x_{n^{\prime}}^{l^{\prime}}\right] \\
& \mathcal{R}\left(\nu, \nu^{\prime}\right)=\phi(\nu) \phi\left(\nu^{\prime}\right) \\
& \frac{v_{\mathrm{th}}}{H(z)}<\lambda
\end{aligned}
$$

Excess line photons injected into radiation field

$$
\left(\frac{8 \pi \nu_{n^{\prime}}^{3}}{c^{\prime} n_{H}}\right)\left(f_{n n^{\prime}}^{+}-f_{n n^{\prime}}^{-}\right)=A_{n n^{\prime}}^{l^{\prime}} P l_{n n^{\prime}}^{l l^{\prime}}\left[x_{n}^{l}\left(1+f_{n n^{\prime}}^{+}\right)-\frac{g_{n}^{l}}{g_{n^{\prime}}^{l}} x_{n}^{l^{\prime}} f_{n n^{\prime}}^{+}\right]
$$

- Photons are conserved outside of line regions

$$
f_{n 1}^{+10}=f_{n+1,1}^{-10}\left[\frac{1-(n+1)^{-2}}{1-n^{-2}}(1+z)-1\right]
$$

RADIATION FIELD: BLACK BODY+

- Escape probability treated in Sobolev approx.

$$
P_{n, n^{\prime}}^{l, l^{\prime}}=\frac{1-e^{-\tau_{s}}}{\tau_{s}} \quad \tau_{s}=\frac{c^{3} n_{\mathrm{H}}}{8 \pi H \nu_{n n^{\prime}}^{3}} A_{n n^{\prime}}^{l l^{\prime}}\left[\frac{g_{n^{\prime}}^{l^{\prime}}}{g_{n}^{l}} x_{n}^{l}-x_{n^{\prime}}^{l^{\prime}}\right]
$$

$$
\mathcal{R}\left(\nu, \nu^{\prime}\right)=\phi(\nu) \phi\left(\nu^{\prime}\right)
$$

- Ali-Haimoud, Hirata, and Forbes are solving FP eqn. to obtain evolution of $f(\nu)$ more generally, including atomic recoil/diffusion, 2γ decay and full timedependence of problem, coherent and incoherent scattering, overlap of higher-order Lyman lines

STEADY-STATE APPROXIMATION FOR EXCITED STATES

```
5-2
```

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\vec{s}
$$

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\vec{s} \longrightarrow \vec{x}=\left(\begin{array}{c}
\vec{x}_{0} \\
\vec{x}_{1} \\
\cdots \\
\vec{x}_{n_{\max }-1}
\end{array}\right)
$$

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathrm{B} \vec{x}+\vec{s}
$$

For state 1, includes BB transitions out of 1 to all other 1", photo-ionization, 2γ transitions to ground state

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathrm{R}_{\mathrm{R} \vec{x}+\vec{s}}
$$

For state 1, includes BB transitions into 1 from all other 1'.

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\Theta
$$

- Includes recombination to 1 ,

1 and 2γ transitions from ground state

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\vec{s}
$$

For $\mathbf{n}>1, t_{\text {rec }}^{-1} \sim 10^{-12} s^{-1}<\mathbf{R}, \vec{s} \rightarrow-\vec{x} \simeq \mathbf{R}^{-1} \vec{s}$ $\mathrm{R} \lesssim 1 \mathrm{~s}^{-1}$ (e.g. Lyman- α)

RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

- Matrix is $\approx \mathrm{n}_{\max }^{2} \times \mathrm{n}_{\max }^{2}$
- Brute force would require $n_{\max }^{6} \approx 1000 \mathrm{~s}$ for $\mathrm{n}_{\max }=200$ for a single time step
- Sparsity to the rescue $\Delta l= \pm 1$

$$
M_{11-1} \vec{x}_{1-1}+M_{11} \vec{x}_{1}+M_{11+1} \vec{x}_{1+1}=\vec{s}_{1}
$$

$$
\vec{v}_{l}=\chi_{\mathbf{1}}\left[\vec{s}_{l}-\mathbf{M}_{1,1+1} \vec{v}_{l}+\Sigma_{l^{\prime}=l-1}^{0} \sigma_{l, l^{\prime}} \vec{s}_{l^{\prime}}(-1)^{l^{\prime}-l}\right]
$$

$$
\chi_{l}=\left\{\begin{array}{lll}
\mathbf{M}_{00}^{-1} & \text { if } l=0 & \sigma_{l, l-1}=\mathbf{M}_{l, l-1} \chi_{l-1} \\
\left(\mathbf{M}_{l+1, l+1}-\mathbf{M}_{l+1, l,} \chi_{l} \mathbf{M}_{l, l+1}\right)^{-1} & \text { if } l>0 & \sigma_{l, i}=\sigma_{l, i+1} \mathbf{M}_{i+1, i} \chi_{i}
\end{array}\right.
$$

SOME COMPUTATIONAL NOTES

- Ingredients incorporated into user-friendly code (RecSparse) which outputs $\mathrm{x}(\mathrm{z})$ for all times and atomic populations at several chosen slices.
- Collisions neglected for time being
- LAPACK libraries used for inversion of submatrices
- Simple rk4 ode solver used (inopportune for a stiff set of equations)
- Checked on MLA code of Hirata et al. with higher level two-photon transitions turned off and dense time grid (19548 steps in dlna going from $\mathrm{z}=1606$ to $\mathrm{z}=700$), agreement to several parts in 10^{5}, with and without feedback

DEVIATIONS FROM BOLTZMANN EQ: HIGH-N

- $a n \gtrsim A_{\mathrm{bb}, \mathrm{down}}$.

DEVIATIONS FROM BOLTZMANN EQ: I-substates

RecSparse results $\quad n_{\max }=30$

DEVIATIONS FROM BOLTZMANN EQ: I-substates

RecSparse results $\quad n_{\text {max }}=30$

Deviations from boltzMann eq: I-substates

RecSparse results $\quad n_{\max }=30$

DEVIATIONS FROM BOLTZMANN EQ: I-substates

RecSparse results $\quad n_{\max }=30$

Chluba/Rubino-Martin/Sunyaev 2006

$n=22$

$$
n=6
$$

Highest I states recombine inefficiently, and are relatively under-populated

DEVIATIONS FROM BOLTZMANN EQ: I-substates

RecSparse results $\quad n_{\max }=30$

DEVIATIONS FROM BOLTZMANN EQ: I-substates

RecSparse results $\quad n_{\max }=30$

DEVIATIONS FROM BOLTZMANN EQ: l-substates

RecSparse results $\quad n_{\text {max }}=30$

DEVIATIONS FROM BOLTZMANN EQ: I-substates

RecSparse results $\quad n_{\max }=30$

DEVIATIONS FROM BOLTZMANN EQ: l-substates

Compare with Rubino-Martin, Chluba, and Sunyaev 2006: Similar Features!

DEVIATIONS FROM BOLTZMANN EQ: I-substates

RecSparse output

DEVIATIONS FROM BOLTZMANN EQ: I-substates

RecSparse output

Patterns persist for high $\mathrm{n}, n_{\max }$

DEVIATIONS FROM BOLTZMANN EQ: I-substates

RecSparse output

I-substates are highly out of Boltzmann eqb'm at late times

WHAT IS THE ORIGIN OF THE $=2$ DIP?

$$
A_{\mathrm{nd} \rightarrow 2 \mathrm{p}}>A_{\mathrm{np} \rightarrow 2 \mathrm{~s}}>A_{\mathrm{ns} \rightarrow 2 \mathrm{p}}
$$

- $\mathrm{l}=2$ depopulates more efficiently than $\mathrm{l}=1$ for higher $(\mathrm{n}>2)$ excited states
- We can test if this explains the dip at $1=2$ by running the code with Balmer transitions from $1=2$ artificially disabled: the blip should move to l=1

I-substate populations, Balmer lines on

$$
n_{\max }=50
$$

$z=440$
$z=320$
$z=205$

I-substate populations, Balmer lines off

$$
n_{\max }=50
$$

$$
\begin{aligned}
& z=440 \\
& z=320 \\
& z=205
\end{aligned}
$$

l-substate populations, Balmer lines off

$$
n_{\max }=50
$$

$$
\begin{aligned}
& z=440 \\
& z=320 \\
& z=205
\end{aligned}
$$

\square
Dip moves as expected when Balmer lines are off!

I-substate populations, Balmer lines off

$$
n_{\max }=50
$$

$$
\begin{aligned}
& z=440 \\
& z=320 \\
& z=205
\end{aligned}
$$

DEVIATIONS FROM SAHA EQUILIBRIUM

- $\mathrm{n}=1$ suppressed due to freeze-out of x_{e}
- Remaining levels 'try' to remain in Boltzmann eq. with $n=2$
- Super-Boltz effects and two- γ transitions $(\mathrm{n}=1 \rightarrow \mathrm{n}=2$) yield less suppression for $\mathrm{n}>1$
- Problem gets worse at late times (low z) as rates fall

DEVIATIONS FROM SAHA EQUILIBRIUM

- $\mathrm{n}=1$ suppressed due to freeze-out of x_{e}
- Remaining levels 'try' to remain in Boltzmann eq. with $\mathrm{n}=2$
- Super-Boltz effects and two- γ transitions $(\mathrm{n}=1 \rightarrow \mathrm{n}=2$) yield less suppression for $\mathrm{n}>1$
- Problem gets worse at late times (low z) as rates fall

RESULTS: RECOMBINATION HISTORIES

$x_{e}(z)$ falls with increasing $n_{\max }=10 \rightarrow 200$, as expected.

- Rec Rate>downward BB Rate> Ionization, upward BB rate
- For $n_{\max }=100$, code computes in only 2 hours

QUADRAPOLE TRANSITIONSAND RECOMBINATION

- Electric quadrupole (E2) transitions are suppressed but conceivably not irrelevant at the desired level of accuracy:

$$
\frac{A_{m, l \pm 2 \rightarrow n, l}^{\text {quad }}}{A_{m, l \pm 1 \rightarrow n, l}^{\text {dipole }}} \sim \alpha^{2} \approx 5 \times 10^{-5}
$$

- Coupling to ground state will overwhelmingly dominate:

$$
\frac{A_{n, 2 \rightarrow 1,0}^{\text {quad }}}{A_{n, 2 \rightarrow m, 0}^{\text {quad }}} \propto \frac{\omega_{n 1}^{5}}{\omega_{n m}^{5}}=\left(\frac{1-\frac{1}{n^{2}}}{\frac{1}{m^{2}}-\frac{1}{n^{2}}}\right)^{5} \geq 1024 \text { if } m \geq 2
$$

- Magnetic dipole rates suppressed by several more orders of magnitude

QUADRUPOLE RATES: BASIC FORMALISM

- $A_{n_{a}, l_{a} \rightarrow n_{b}, l_{b}}^{\text {quad }}=\frac{\alpha}{15} \frac{1}{2 l_{a}+1} \frac{\omega_{a b}^{5}}{c^{4}}\left\langle l_{a}\left\|C^{(2)}\right\| l_{b}\right\rangle^{2}\left({ }^{2} R_{n_{b}}^{n_{a} l_{b}}\right)^{2}$
- Reduced matrix element evaluated using Wigner 3J symbols:

$$
\left\langle l_{a}\left\|C^{(2)}\right\| l_{b}\right\rangle=(-1)^{l_{a}} \sqrt{\left(2 l_{a}+1\right)\left(2 l_{b}+1\right)}\left(\begin{array}{ccc}
l_{a} & 2 & l_{b} \\
0 & 0 & 0
\end{array}\right)
$$

- Radial matrix element evaluated using operator methods

$$
{ }^{2} R_{n_{b} l_{b}}^{n_{a} l_{a}} \equiv \int_{0}^{\infty} r^{4} R_{n_{a} l_{a}}(r) R_{n_{b} l_{b}}(r) d r
$$

QUADRUPLETRANSITIONS AND RECOMBINATION

- Lyman lines are optically thick, so $n d \rightarrow 1 s$ immediately followed by $1 s \rightarrow n p$, so this can be treated as an effective $d \rightarrow p$ process with rate $A_{n d \rightarrow 1 s} x_{n d}$.
- Preserves sparsity pattern of rate matrix
- Detailed balance yields net rate $\quad R_{n d \rightarrow n p}^{\mathrm{quad}}=A_{n d \rightarrow 1 s}\left(x_{n d}-\frac{5}{3} x_{n p}\right)$
- . $\mathrm{x}_{3 d}>\frac{5}{3} x_{3 p}$, so net is $3 d \rightarrow 3 p .3 p \rightarrow 2 s$ is fast, and $2 s \rightarrow 1 s$ dominates recombination rate at early times, so this accelerates recombination.
- For $n>3, x_{n d}<\frac{5}{3} x_{n p}$, so net is $n p \rightarrow n d . n d \rightarrow 2 p$ is fast, but $2 p \rightarrow 1 s$ is a slow recombination channel while optically thick. As it overtakes $2 s \rightarrow 1 s$, higher quadrupoles also accelerate recombination.

QUADRAPOLE RATES: OPERATOR ALGEBRA

- Radial Schrödinger equation can be factored to yield:

$$
\begin{aligned}
-\Omega_{n l}=\frac{1}{l A_{n l}}[& \left.1-l\left(\frac{d}{d r}+\frac{l+1}{r}\right)\right] \quad+\Omega_{n l}=\frac{1}{l A_{n l}}\left[1+l\left(\frac{d}{d r}-\frac{l-1}{r}\right)\right] \\
& -\Omega_{n l} R_{n l}(r)=R_{n l-1}(r) \\
& +\Omega_{n l-1} R_{n l}(r)=R_{n l}(r) \quad A_{n l}=\frac{\sqrt{n^{2}-l^{2}}}{n l}
\end{aligned}
$$

- This algebra can be applied to radial matrix elements:

QUADRAPOLE RATES: OPERATOR ALGEBRA

- Radial Schrödinger equation can be factored to yield:

$$
\begin{aligned}
-\Omega_{n l}=\frac{1}{l A_{n l}}[& \left.1-l\left(\frac{d}{d r}+\frac{l+1}{r}\right)\right] \quad+\Omega_{n l}=\frac{1}{l A_{n l}}\left[1+l\left(\frac{d}{d r}-\frac{l-1}{r}\right)\right] \\
& -\Omega_{n l} R_{n l}(r)=R_{n l-1}(r) \\
+ & \Omega_{n l-1} R_{n l}(r)=R_{n l}(r) \quad A_{n l}=\frac{\sqrt{n^{2}-l^{2}}}{n l}
\end{aligned}
$$

- This algebra can be applied to radial matrix elements:

$$
{ }^{2} R_{n^{\prime} l-1}^{n}=\frac{1}{A_{n l}}\left\{A_{n^{\prime} l}^{2} R_{n^{\prime} l}^{n l}+2^{(1)} R_{n^{\prime} l-1}^{n l}\right\} \quad{ }^{(2)} R_{n^{\prime} n^{\prime}-1}^{n} n^{n^{\prime}-1}={\frac{2 n n^{\prime}}{n^{2}-n^{\prime 2}}}^{(1)} R_{n n^{\prime}-1}^{n n^{\prime}}
$$

Diagonal!

Quadrapole rates: Operator algebra

- Radial Schrödinger equation can be factored to yield:

$$
\begin{aligned}
-\Omega_{n l}=\frac{1}{l A_{n l}} & {\left[1-l\left(\frac{d}{d r}+\frac{l+1}{r}\right)\right] \quad+\Omega_{n l}=\frac{1}{l A_{n l}}\left[1+l\left(\frac{d}{d r}-\frac{l-1}{r}\right)\right] } \\
& -\Omega_{n l} R_{n l}(r)=R_{n l-1}(r) \\
& +\Omega_{n l-1} R_{n l}(r)=R_{n l}(r) \quad A_{n l}=\frac{\sqrt{n^{2}-l^{2}}}{n l}
\end{aligned}
$$

- This algebra can be applied to radial matrix elements: $l(2 l+3) A_{n^{\prime}} l^{(2)} R_{n^{\prime} l l-1}^{n}=(2 l+1)(l+2) A_{n} l+2^{(2)} R_{n^{\prime} l}^{n} l+2+2(l+1) A_{n^{\prime}} l+1^{(2)} R_{n^{\prime} l+1}^{n} l+$ $2(2 l+1)(3 l+5)^{(1)} R_{n}^{n} l+1 \quad\left(1 \leq l \leq n^{\prime}-1\right)$
(2) $R_{n^{\prime}}^{n} n_{n^{\prime}+1}^{\prime}=0$
(2) $R_{n^{\prime} n^{\prime}-1}^{n n^{\prime}+1}=(-1)^{n-n^{\prime}} 2^{2 n^{\prime}+4}\left[\frac{\left(n+n^{\prime}+1\right)!}{\left(n-n^{\prime}-2\right)!\left(2 n^{\prime}-1\right)!}\right]^{1 / 2} n^{\prime}\left(n n^{\prime}\right)^{n^{\prime}+3} \frac{\left(n-n^{\prime}\right)^{n-n^{\prime}-3}}{\left(n+n^{\prime}\right)^{n+n^{\prime}+3}}$

Off-diagonal!

QUADRUPOLE RATES: VERIFICATION

- Rates were checked using WKB expressions like dipole rates
- Compared to published numerical rates of Jitrik and Bunge: 4-5 digits of agreement (Dirac vs. non-rel wf), but this would be a correction to a small correction

RESULTS: QUADRUPOLE RATES AND RECOMBINATION

33

WHO CARES?

I. SMEARING AND MOVING THE SURFACE OF LAST SCATTERING (SLSS)

- Photons kin. decouple when Thompson scattering freezes out $\gamma+e^{-} \Leftrightarrow \gamma+e^{-}$

$$
\begin{aligned}
\Gamma=n_{\mathrm{e}} \sigma_{\mathrm{T}} c & =2.2 \times 10^{-19} \mathrm{~s}^{-1} \frac{x_{e} \Omega_{b} h^{2}}{a^{3}}= \\
H & =H_{0} \Omega_{m}^{1 / 2} a^{-3 / 2}\left[1+\frac{a_{\mathrm{eq}}}{a}\right]^{1 / 2}
\end{aligned}
$$

$z_{\mathrm{dec}} \simeq 1100$:Decoupling occurs during recombination

$$
C_{l} \rightarrow C_{l} e^{-2 \tau} \quad \text { if } l>\frac{\eta_{0}}{\eta_{\text {rec }}} .
$$

$$
\tau=\int_{0}^{\eta \mathrm{dec}} d \eta n_{e}[\eta] \sigma_{\mathrm{T}} a(\eta)
$$

WHO CARES?

II. The Silk Damping Tall

- From Wayne Hu's website

$$
l_{\text {damp }} \sim 1000
$$

- Inhomogeneities are damped for $\lambda<\lambda_{D}$
$k_{D}^{-2}(\eta) \simeq \int_{0}^{\eta} \frac{d \eta^{\prime}}{6(1+R) n_{e}\left[\eta^{\prime}\right] \sigma_{\mathrm{T}} a\left[\eta^{\prime}\right]}\left[\frac{R^{2}}{1+R}+\frac{8}{9}\right]$
$R=\frac{3 \rho_{b}^{0}}{4 \rho^{\gamma}}$
$\left|\Theta_{l}\left(\eta_{0}\right)\right| \simeq \int_{0}^{\eta_{0}} d \eta \dot{\tau} e^{-\tau(\eta)} e^{i k \int d \eta c_{s}} e^{-k^{2} / k_{D}^{2}(\eta)} \tilde{\delta}(k) j_{l}\left(k\left(\eta-\eta_{0}\right)\right) d k$

WHO CARES?

II. The Silk Damping Tall

- From Wayne Hu's website

$l_{\text {damp }} \sim 1000$

- Inhomogeneities are damped for $\lambda<\lambda_{D}$
$k_{D}^{-2}(\eta) \simeq \int_{0}^{\eta} \frac{d \eta^{\prime}}{6(1+R) n_{e}\left[\eta^{\prime}\right] \sigma_{\mathrm{T}} a\left[\eta^{\prime}\right]}\left[\frac{R^{2}}{1+R}+\frac{8}{9}\right]$
$R=\frac{3 \rho_{b}^{0}}{4 \rho^{\gamma}}$
$\left|\Theta_{l}\left(\eta_{0}\right)\right| \simeq \int_{0}^{\eta_{0}} d \eta \dot{\tau} e^{-\tau(\eta)} e^{i k \int d \eta c_{s}} e^{-k^{2} / k_{D}^{2}(\eta)} \tilde{\delta}(k) j_{l}\left(k\left(\eta-\eta_{0}\right)\right) d k$

WHO CARES?

III. FINITETHICKNESS OFTHE SLSS

- Additional damping of form

$$
\left|\Theta_{l}\left(\eta_{0}, k\right)\right| \rightarrow\left|\Theta_{l}\left(\eta_{0}, k\right)\right| e^{-\sigma^{2} \eta_{\mathrm{rec}}^{2} k^{2}}
$$

Who Cares? IV. CMB POLARIZATION

- Need to scatter quadrapole to polarize CMB
$\Theta_{l}^{P}(k)=\int d \eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T, 2}(k, \eta) \frac{l^{2}}{(k \eta)^{2}} j_{l}(k \eta)$
- Need time to develop a quadrapole
$\Theta_{l}(k \eta) \sim \frac{k \eta}{2 \tau} \Theta_{l}(k \eta) \ll \Theta_{l}(\eta)$ if $l \geq 2$, in tight coupling regime

WHO CARES? IV. CMB POLARIZATION

- Need to scatter quadrapole to polarize CMB
$\Theta_{l}^{P}(k)=\int d \eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T, 2}(k, \eta) \frac{l^{2}}{(k \eta)^{2}} j_{l}(k \eta)$
- Need time to develop a quadrapole
$\Theta_{l}(k \eta) \sim \frac{k \eta}{2 \tau} \Theta_{l}(k \eta)<\Theta_{l}(\eta)$ if $l \geq 2$, in tight coupling regime

WHO CARES? IV. CMB POLARIZATION

- Need to scatter quadrapole to polarize CMB
$\Theta_{l}^{P}(k)=\int d \eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T, 2}(k, \eta) \frac{l^{2}}{(k \eta)^{2}} j_{l}(k \eta)$
- Need time to develop a quadrapole
$\Theta_{l}(k \eta) \sim \frac{k \eta}{2 \tau} \Theta_{l}(k \eta)<\Theta_{l}(\eta)$ if $l \geq 2$, in tight coupling regime

TEMPERATURE $C_{l} s$

EE POLARIZATION $C_{l} s$

Lower τ after LSS, wider LSS
 \rightarrow more polarization

ATOMIC COLLISIONS

- For fixed n, 1-changing collisions bring different-l substates closer to statistical equilibrium (SE)
- Being closer to SE speeds up rec. by mitigating high-l bottleneck (Chluba, Rubino Martin, Sunyaev 2006)
- Theoretical collision rates unknown to factors of 2 !
- $b<a_{0} n^{2} \rightarrow$ multi-body QM!
- $t_{\text {pass }}<t_{\text {orbit }} \rightarrow$ Impulse approximation breaks down!
- Next we'll include them to see if we need to model rates better

WRAPPING UP

- Start using a more efficient integration
- Incorporation of Yacine's line-overlap formalism in place of Sobolev approximation
- Collisions
- Effective source term for omitted higher levels- near Saha eq., should be tractable
- Full incorporation into CMBFAST/CAMB and analysis of errors/degeneracies with cosmo. parameters

