

Beware of the dark side:

Some astrophysical limits to unconventional sources of stress and energy

Daniel Grin
Advisor: Marc Kamionkowski
Candidacy Presentation
December 5, 2007

Outline

- * Telescope searches for decaying relic axions
- * Cosmological axion constraints in non-standard thermal histories
- * The evolution and scatter of dark matter halo concentrations
- * Fat gravitons
- * Ideas for future work

Telescope searches for decaying relic axions

Collaborators:

G. Covone, J.P. Kneib, M. Kamionkowski, Andrew Blain, Eric Jullo

- 1) Phys. Rev. D75, 105018 (2007), astro-ph/0611502
- 2) ESO VLT Programme 080.A-06

Outline: Axions, Part I

- * Axion background/past work
- * Data/analysis
- * New limits to ~eV axions
- * VLT proposal

What are axions?

* Limits on the <u>neutron electric dipole moment</u> are strong. Fine tuning?

$$d_n = 10^{-16} \ \theta \ \text{e cm}$$
 $\theta \lesssim 10^{-10}$

* New field and U(1) symmetry dynamically drive CP-violating term to 0

$$\mathcal{L}_{\text{CPV}} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\text{a}}} g^2 G\tilde{G}$$

* Axions have a <u>mass</u>

$$m_{
m a} \simeq rac{m_{\pi} f_{\pi}}{f_{
m a}} rac{\sqrt{r}}{1+r} \hspace{1cm} r \equiv m_{
m u}/m_{
m d} \, .$$

What are axions?

- * Axions interact weakly with SM particles $\Gamma, \sigma \propto \alpha^2$
- Axions have a two-photon coupling

$$g_{a\gamma\gamma} = -\frac{3\alpha}{8\pi f_a} \xi$$

$$\xi \equiv \frac{4}{3} \left\{ E/N - \frac{2(4+r)}{3(1+r)} \right\}$$

* Two populations of axions:

Cold (nonthermal) axions

$$m_{\rm a} \lesssim 10^{-2} \ {\rm eV}$$

$$\Omega_{\rm a} h^2 \simeq 0.13 \left(\frac{m_{\rm a}}{10^{-5} \text{ eV}} \right)^{-1.18}$$

Hot (thermal) axions

$$m_{\rm a} \gtrsim 10^{-2} \ {\rm eV}$$

$$\Omega_{
m a} h^2 \simeq rac{m_{
m a}}{130~{
m eV}} \left(rac{10}{g_{*_{
m S},{
m F}}}
ight)$$
5/49

Axion decay

in source frame

$$\lambda_a = \frac{24,800\text{Å}}{m_{\text{a,eV}}}$$

* For galaxies/clusters, <u>line</u> comparable to sky background

$$I_{\lambda_{\rm o}} \propto m_{\rm a}^7 \xi^2 \Sigma / \left(1 + z_{\rm cl}\right)^4$$

* First attempt made at KPNO 2.1m using Gold spectrograph on Abell clusters A1413, A2218, and A2256:

$$3 \text{ eV} \le m_{\text{a}} \le 8 \text{ eV}$$

The modern advantage

- * 8-meter-class telescope: Sensitivity to fainter signal
- * IFU (Integrated Field Unit) spectroscopy: Spatial Resolution!
- * Lensing maps: no dynamical assumptions, better sky subtraction

Seeking axions with the VIMOS IFU

- * VIMOS IFU (VLT, 6400 fibers) has largest f.o.v. of any instrument in its class: 54"x54" mode used
- * LR-Blue grism used: $4000\text{\AA} \le \lambda \le 6800\text{\AA}$ (4.5 eV $\le m_{\rm a} \le 7.7$ eV). Dispersion of 5.4Å adequate to resolve axion line:

$$\delta \lambda = 195 \ \sigma_{1000} \ m_{\rm a,eV}^{-1} \ {\rm \AA}$$

* 10.8 ksec exposures of A2667 (z=0.233, 1 pointing) and A2390 (z=0.228, 3 pointings) taken as part of VIMOS study of these clusters

Applying the imaging

* Signal modeled as sum of density-dependent signal and uniform sky background with noise (Poisson, CCD bias, read-out, flat-fielding, fiber crosstalk, mass map errors)

$$I_{\lambda,i}^{\text{mod}} = \langle I_{\lambda}/\Sigma_{12} \rangle \Sigma_{12,i} + b_{\lambda}$$

* End result is a 1D spectrum of the cluster. Fibers weighted to extract density-dependent part of signal: $\langle I_{\lambda}/\Sigma_{12}\rangle$

New limits to KSVZ/DFSZ axions: standard production mechanism

Extending the optical axion window

* Sensitivity improves at higher redshift!

$$I_{\lambda_{\rm o}} \propto m_{\rm a}^7 (1+z_{\rm cl})^{-4}$$
 $m_{\rm a} = 24,800 \text{ Å} (1+z_{\rm cl})/\lambda_{\rm a}$
 $\xi \propto I_{\lambda_{\rm o}}^{1/2} (1+z_{\rm cl})^{-3/2}$

RDCS 1252

- * RDCS 1252 is a $8 \times 10^{14} M_{\odot}$ cluster at z=1.237
- * Allotted 25 hrs of time for VIMOS IFU spectra using LR-Blue grism
- * Publicly available weak-lensing mass maps (Lombardi et al. 2005), 2 arcs?

RDCS 1252

- * RDCS 1252 is a $8 \times 10^{14} M_{\odot}$ cluster at z=1.237
- * Allotted 25 hrs of time for VIMOS IFU spectra using LR-Blue grism
- * Publicly available weak-lensing mass maps (Lombardi et al. 2005), 2 arcs?

3 pointings cover range of WL mass contours

Cosmological axion constraints in non-standard thermal histories

Collaborators: Tristan Smith and Marc Kamionkowski

arXiv:0711.1352

Outline: Axions, Part II

- * Motivation for considering low-temperature reheating (LTR)
- * Cosmological axion constraints
- * LTR details
- * New Constraints

Motivation for low-temperature reheating

- * No strong evidence for nature of expansion history before 4 MeV
- * Thermal gravitino bounds (closure, BBN) require $T_{\rm rh} \lesssim 10^8~{
 m GeV}$ or $T_{\rm rh} \lesssim 1~{
 m GeV}$
- * Light SM neutrinos become a viable WDM candidate if $T_{\rm rh} \sim 1-10~{
 m MeV}$

- * Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$
- * SDSS galaxy P(k) and WMAP1 yield exclusion region (Hannestad et al. 2004)

- * Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$
- * SDSS galaxy P(k) and WMAP1 yield exclusion region (Hannestad et al. 2004)
- * Need $g_{*s,F} \gtrsim 87$ to agree with data

$$\frac{T_{\rm a}}{T_{\nu}} \simeq \left(\frac{10.75}{g_{*_{\rm S},\rm F}}\right)^{1/3}$$

- * Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$
- * SDSS galaxy P(k) and WMAP1 yield exclusion region (Hannestad et al. 2004)
- * Need $g_{*s,F} \gtrsim 87$ to agree with data
- * 2D constraints can be applied to our two-parameter $(m_{\rm a}, T_{\rm rh})$ model

$$\frac{T_{\rm a}}{T_{\nu}} \simeq \left(\frac{10.75}{g_{*_{\rm S},\rm F}}\right)^{1/3}$$

- * Axions are relativistic at early times, free stream and suppress power by $\Delta P/P \simeq -8\Omega_{\rm a}/\Omega_{\rm m}$ when $\lambda \lesssim \lambda_{\rm fs}$
- * SDSS galaxy P(k) and WMAP1 yield exclusion region (Hannestad et al. 2004)
- * Need $g_{*s,F} \gtrsim 87$ to agree with data
- * 2D constraints can be applied to our two-parameter $(m_{\rm a}, T_{\rm rh})$ model

Low-temperature reheating (LTR)

* Simple model in which $\phi \to \mathrm{radiation}$ is responsible for extended reheating phase

$$\frac{d\rho_{\rm R}}{dt} + 4H\rho_{\rm R} = \Gamma_{\phi}\rho_{\phi} \qquad \frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi}$$

- * $T_{\rm rh} \gtrsim 4 \text{ MeV}$ to avoid changing successful predictions of BBN
- * Decay products thermalize and entropy generated

$$T = \left[\frac{30}{\pi^2 g_*(T)}\right]^{1/4} \rho_{\rm R}^{1/4}$$

* Past work considered effects on WIMP, SM neutrino, sterile neutrino, and cold axion abundances and constraints. New work: LSS/CMB/total density constraints to hot axions in LTR

Low-temperature reheating (LTR)

* Entropy generation slows down temperature decrease

$$T \propto a^{-3/8}$$
 until $T \lesssim T_{\rm rh}$, then $T \propto a^{-1}$

* Hubble expansion is faster

$$H \propto T^4$$
 until $T \lesssim T_{\rm rh}$, then $H \propto T^2$

Hot axion production at early times

Axion Production:

Hot axion production at early times

Axion Production:

* Axions produced through interactions between non-relativistic pions in chemical equilibrium with rate

$$\Gamma \sim n_{\pi} \langle \sigma v \rangle = \frac{T^2 m_{\rm a}^2 (1 - r)^2}{9z f_{\pi}^4 m_{\pi}^2} \left(\frac{m_{\pi} T}{2\pi}\right)^{3/2} e^{-m_{\pi}/T}$$

Hot axion production at early times

Axion Production:

* Axions produced through interactions between non-relativistic pions in chemical equilibrium with rate

$$\Gamma \sim n_{\pi} \langle \sigma v \rangle = \frac{T^2 m_{\rm a}^2 (1 - r)^2}{9z f_{\pi}^4 m_{\pi}^2} \left(\frac{m_{\pi} T}{2\pi}\right)^{3/2} e^{-m_{\pi}/T}$$

Axion freeze out in LTR

- * Faster expansion: <u>freeze-out</u> is earlier
- * When $T_{\rm rh}\gg T_{{
 m F},0}$, standard results are recovered
- * $\Gamma \propto f_{
 m a}^{-2} \propto m_{
 m a}^2$, so more massive axions freeze out later

Axion abundance in LTR

- * Higher $T_{\rm F}$ means higher initial equilibrium <u>abundance</u>
- * Entropy generation dramatically suppresses abundances

Axion temperature in LTR

st Entropy generation leads to $T_{
m a} \propto a^{-1}$, while $T_{\gamma} \propto a^{-3/8}$:

$$\left(\frac{T_{\rm a}}{T_{\nu}} \approx (10.75/g_{*_{\rm S},\rm F})^{1/3}, \quad \text{if } T_{\rm F} < T_{\rm rh}. \right)$$

$$\frac{T_a}{T_{\nu}} \simeq \left(\frac{11}{4}\right)^{1/3} \left(\frac{T_{\rm rh}}{T_{\rm F}}\right)^{5/3} \left(\frac{g_{*,\rm RH}^2 g_{*_{\rm S},0}}{g_{*,\rm F}^2 g_{*_{\rm S},\rm RH}}\right)^{1/3} \quad \text{if } T_{\rm F} > T_{\rm rh}.$$

* Axions non-relativistic earlier: Smaller free-streaming length!

$$\lambda_{\rm fs} \simeq \frac{196 \; {
m Mpc}}{m_{
m a,eV}} \left(\frac{T_{
m a}}{T_{
u}}\right) \left\{1 + \ln \left[0.45 m_{
m a,eV} \left(\frac{T_{
u}}{T_{
m a}}\right)\right]\right\}.$$

New constraints

* $\lambda_{\rm fs} \, (T_{\rm rh}, m_{\rm a}) \, \& \, \Omega_{\rm a} h^2 \, (T_{\rm rh}, m_{\rm a})$ calculated to trace out allowed region

New constraints

New constraints

New constraints

New constraints

26/49

Axionic contribution to pre-BBN radiation energy density in LTR

- * Axions are relativistic at T~ 1 MeV and contribute to $N_{
 u}^{
 m eff}$
- * Entropy generation suppresses the axionic contribution to N_{ν}^{eff}

Future <u>limits</u> from abundance of ⁴He

- * $N_{\nu}^{\rm eff}$ contributes to H(T) during radiation domination, setting the abundance of $^4{\rm He}$
- * Current measurements yield constraint $N_{\nu}^{\rm eff} \leq 3.8$
- * ⁴He affects CMB TT, TE, and EE spectra: CMBPOL constraints!

Future work: Lifting the veil of ignorance at T > 100 MeV

in collaboration with Tristan Smith and Sean Tulin

- * WIMPs freeze out at 20 GeV < T < 100 GeV
- * Upcoming colliders (LHC/ILC) may discover a WIMP
- * WIMP M/σ that overcloses the universe in the standard picture would be a smoking gun for a non-standard thermal history

The evolution and scatter of dark matter halo concentrations

Work in progress, in collaboration with Andrew Benson

Outline: Halo Concentrations

- * Background: A universal dark matter halo profile
- * The consequences: Implications for galaxy formation
- * The controversy over evolution and scatter of concentrations
- * A new approach/comparison with 'data'

The NFW halo profile

* Simulations (NFW1995-7 and others) note a nearly universal halo density (two-parameter family) profile

$$\rho = \frac{\delta_c \rho_{\text{crit}}}{\left(\frac{r}{r_{\text{s}}}\right) \left[1 + \left(\frac{r}{r_{\text{s}}}\right)\right]^2} \quad \delta_c = \frac{\Delta_{\text{vir}}}{3} \frac{c^3}{\ln{(1+c)-c/(1+c)}} \qquad \frac{c = r_{\text{vir}}/r_{\text{s}}}{M_{\text{vir}} = (4\pi/3) r_{\text{vir}}^3 \Delta_{\text{vir}} \rho_{\text{crit}}}$$

* Halo concentration is a model-independent notion, e.g.

$$\rho \propto r^{-\alpha} (B+r)^{-\beta}$$
 $c = r_{\rm vir}/r_{-2}$

* Halo concentration is inversely related to halo mass. Sensible in a hierarchical picture

$$c_{200} \simeq 5.3 \left(\frac{M_{200}}{10^{14} h^{-1} M_{\odot}} \right)^{-0.10}$$

* Considerable scatter about mean relation (robust to halo and particle sampling issues): $\left\langle \log_{10}^2 \left(c_{200} \right) - \log_{10}^2 \left(\overline{c}_{200} \right) \right\rangle \simeq 0.1$

Also sensible in a hierarchical picture, but how sensible? But first, why bother?

Concentrations and galaxies

- * Baryons collapse and cool, force adiabatic contraction of halo (Blumenthal 86)
- * `Explains' Tully-Fisher (TF) relation $L \propto v_c^3$
- * Scatter relevant for expected r_{disk}/r_{vir} scatter in TF relation
- * Relevant for setting size of galactic bulge (GALFORM)

Millenium weighs in...

- * The Millenium simulation follows $N=2160^3$ particles in a $L=500h^{-1}$ Mpc box using WMAP1+2dFGRS cosmo parameters $M_{\rm part}=8.6\times10^8~h^{-1}~M_{\odot}$
- \star Using relaxed $N_{\rm FOF} > 500$ halos, concentrations are fit (Neto et al. 2007)

- * Bullock et al. model fails at high M
- * No model accounts for more than 30% of scatter
- * Different prescriptions for z_{coll} tried. NFW works best: Hints that details of merger history matter
- *Bullock et al. model gets redshift wrong

Ingredients of a new approach

- * A model for evolution/scatter in all info in halo merger history
- * Model for each merger:

$$(M_1, M_2,M_n; c_1, c_2, ...c_n) \rightarrow c_f$$

* Single-node model+prescription for accretion to obtain $\overline{c}\left(M,z\right)$ and

$$\langle \log_{10}^2 (c_{200}) - \log_{10}^2 (\overline{c}_{200}) \rangle (M, z)$$

A simple model of post-merger halos

- * Conserve mass $M_{\rm vir,f} = M_{\rm vir,1} + M_{\rm vir,2}$
- * Conserve internal energy (Assume 2T+V=0)

$$E_{\rm b} = -\int \frac{GM(\leq r)}{r} dM = -\frac{H_0^4 r_{\rm vir}^5 \Delta_{\rm vir}^2}{4G} f(c)$$

$$f(c) \equiv \frac{c}{\left[\ln(1+c) - c/(1+c)\right]^2} \frac{c(c+2) - 2(c+1)\ln(1+c)}{2(1+c)^2}$$

* Assume final halo relaxes to NFW

$$f(c_{\rm f}) = \frac{f(c_1) + p^{5/3} f(c_2)}{(1+p)^{5/3}} \longrightarrow c_{\rm f}(p, c_1, c_2) \qquad p \equiv m_2/m_1$$

Adding 2 pieces to the puzzle

- * If $p = \mathcal{O}(1)$, mutual two-halo T/V are non-negligible. Treat this as an inelastic collision. Two prescriptions:
 - * Use mean $v_{\mathrm{rel}_{\theta,r}} = v_{\mathrm{vir},2} a_{\theta,r}(z)$ from Benson 2004 at moment in merger

- * Use actual simulation kinematics!
- * Real NFW halos are still accreting matter $2T + V = \int P\vec{r} \cdot d\vec{S}$
 - * Solve Jeans Equation: $\frac{1}{\rho} \frac{d(\rho \sigma^2)}{dr} = -\frac{GM(\leq r)}{r^2}$
 - * Non-trivial correction: $(2T/|V|)_{\rm vir} \simeq 1.3$ confirmed by simulations (Cole/Lacey 93)

Post-merger predictions

* Solutions asymptote to properties of most massive progenitor in EMR limit

38/49

Calculating the c distribution today

- * Use 1.7×10^7 merger trees in Millenium simulation. Set initial concentration using NFW prescription
- * At nodes, apply preceding prescription to progenitors
- * Assume remaining mass difference is due to accretion and contributes only to $r_{
 m vir}$
- * The good news: 30% scatter about mean relation
- * The bad news: Predicted c(M,z) falls too quickly with M
- * First thing to check: Does our model accurately predict what happens in a single merger?
- * Initial conditions/tree time-step errors?

Halos emerging from single mergers

- * Progenitors of halos with fit concentrations identified at z=0.02 $(1\Delta t_{\rm output})$.
- * Neto et al. have provided us with concentrations at z=0.02. 34 useful mergers
- * 24 mergers with 30% errors or less, 9 mergers with 30-60% errors, 2 mergers off the charts
- * Neto et al. have repeated exercise for adjacent time steps near z=1,2,3, and 4, and will shortly provide us with more mergers to test our model

- * Resolution issues?
- * Obvious mass loss
- * Large fraction of mass in progenitors with no reliably measured concentration?
- * Improper accretion recipe?
- * Insufficient time for halos to relax?
- * Implementation of Millenium kinematics/variation between actual kinematics and assumed distribution
- * Subtle mass loss
- * Energy loss: Ejected particles are probably most energetic

- * Resolution issues | Monte Carlo says propagating fit errors are not the problem
- * Obvious mass loss
- * Large fraction of mass in progenitors with no reliably measured concentration?
- * Improper accretion recipe?
- * Insufficient time for halos to relax?
- * Implementation of Millenium kinematics/variation between actual kinematics and assumed distribution
- * Subtle mass loss
- * Energy loss: Ejected particles are probably most energetic

- * Resolution issues Monte Carlo says propagating fit errors are not the problem
- * Obvious mass loss Mass seems to be conserved within 1-5%
- * Large fraction of mass in progenitors with no reliably measured concentration?
- * Improper accretion recipe?
- * Insufficient time for halos to relax?
- * Implementation of Millenium kinematics/variation between actual kinematics and assumed distribution
- * Subtle mass loss
- * Energy loss: Ejected particles are probably most energetic

- * Resolution issues Monte Carlo says propagating fit errors are not the problem?
- * Obvious mass loss | Mass seems to be conserved within 1-5%
- * Large fraction of mass in progenitors with no reliably measured concentration?
- * Improper accretion recipe?
- Insufficient time for halos to relax?
- * Implementation of Millenium kinematics/variation between actual kinematics and assumed distribution
- * Subtle mass loss
- * Energy loss: Ejected particles are probably most energetic

- * Resolution issues Monte Carlo says propagating fit errors are not the problem
- * Obvious mass loss Mass seems to be conserved within 1-5%
- * Large fraction of mass in progenitors with no reliably measured concentration?
- * Improper accretion recipe? Accretion beyond merger at node recipe marginal
- * Insufficient time for halos to relax?
- * Implementation of Millenium kinematics/variation between actual kinematics and assumed distribution
- * Subtle mass loss
- * Energy loss: Ejected particles are probably most energetic

- * Resolution issues Monte Carlo says propagating fit errors are not the problem.
- * Obvious mass loss | Mass seems to be conserved within 1-5%
- * Large fraction of mass in progenitors with no reliably measured concentration?
- * Improper accretion recipe? Accretion beyond merger at node recipe marginal
- * Insufficient time for halos to relax? Naive condition $t_{\rm dyn}/(10t_{\rm merge}) < 1$ met
- * Implementation of Millenium kinematics/variation between actual kinematics and assumed distribution
- * Subtle mass loss
- * Energy loss: Ejected particles are probably most energetic

What's next

- * Zero-in on when model fails for single mergers
- st If necessary, tune the model: fit coefficients of fitting formula for $c_{
 m f}$ to actual merger results
- * Re-run tree algorithm using actual Millenium kinematics, variety of initial concentration prescriptions
- * Test model using EPS and other semi-analytic merger trees

A lower limit to the scale of an effective theory of gravitation

In collaboration with R.R. Caldwell

astro-ph/0606133 Phys. Rev. Lett. accepted

Outline: Fat gravitons

- * Motivation: Why is the cosmological constant small?
- * Linear theory calculation
- * Observational limits
- * Subtleties/open questions/future work

`Fat gravitons' and Λ

* A variety of data hint at new physics at a surprisingly low energy scale:

$$\rho_{\Lambda} = \frac{1}{2} \int_0^{\mu} \frac{d^3k}{(2\pi\hbar)^3} kc = \Omega_{\Lambda} \rho_{\text{crit}} \to \mu \simeq 10^{-3} \text{ eV}$$

- * Alternative to usual approach: Modify gravity, e.g. a cutoff $q^{\nu}q_{\nu} \leq \mu^2$ on graviton 4-momentum
- * Modified propagator arises from a weak-field, harmonic gauge `fading' gravity Lagrangian with

$$\mathcal{L}_g = \left(h^{\alpha\beta} - \frac{1}{2}\eta^{\alpha\beta}h\right)\mathcal{G}^{-1}\left(\Box/\mu^2\right)\Box h_{\alpha\beta}$$

$$D_{\rho\nu\lambda\sigma}(q) = \frac{(\eta_{\rho\lambda}\eta_{\nu\sigma} + \eta_{\rho\sigma}\eta_{\nu\lambda} - \eta_{\rho\nu}\eta_{\lambda\sigma})e^{-q/\mu}}{q^2 + i\epsilon}$$

Linear calculation of M- γ scattering

* Interaction described by $\mathcal{L}_{\rm I} = -\sqrt{32\pi G}h_{\mu\nu}T^{\mu\nu}/2$

For EM
$$T^{\mu\nu}=F^{\mu\rho}F^{\nu}_{
ho}-rac{1}{4}\eta^{\mu\nu}F_{lphaeta}F^{lphaeta}$$

* For an elastic collision, external field approach/Feynman rules yield (for small angles)

Same as GR Result!

$$\frac{d\sigma}{d\Omega} = \frac{(4GM)^2}{(c\theta)^4} \longrightarrow d\sigma = 2\pi b db \longrightarrow \theta = \frac{4GM}{c^2 b}$$

Linear calculation of M- γ scattering

We expect a lack of high-frequency gravitationally lensed images if a cutoff exists

* For an elastic collision, external field approach/Feynman rules yield (for small angles)

$$\frac{d\sigma}{d\Omega} = \frac{(4GM)^2}{(c\theta)^4} e^{-2k_{\gamma}\theta/\mu}$$

Functional form of cutoff is irrelevant

 $*|k_{\gamma,f} - k_{\gamma,i}| \simeq k_{\gamma}\theta > \mu$ deflections are suppressed

Astrophysical vs. lab constraints

- * Gravitational lenses have been observed from x-ray to radio frequencies
- * The best limits will come from the highestenergy photons: x-ray lenses!
- * Pair of images in GL system Q0957+561: QSO lensed by galaxy. Deflection angle $\alpha \simeq 7.8$ "

* Lens images unchanged for $E_{\gamma} < 5 \text{ keV}$

$$\to \mu > 0.38 \text{ eV}/c \gg 10^{-3} \text{ eV}/c$$

* Experiments confirm inverse square law (e.g. EOT-WASH) down to

$$l_0 = \hbar c/\mu \simeq 56 \ \mu \text{m} \longrightarrow \mu > 0.0035 \ \text{eV}/c$$

Subtleties/Caveats

- * The effect does not go away for composite sources
- * We are unable to recover the effect from the classical EOM of our Lagrangian: Has a tree-level amplitude become a QM object by the introduction of a new scale?
- * Born approximation is exact
- * We can write down a classical force-term which mimics this effect, but not one that obviously comes from our Lagrangian
- * Does the formalism used to derive Feynman rules break down for our Lagrangian?

48/49

Ideas for future Work

- * Complete halo concentration project
- * Use Millenium merger trees to predict SMBH merger rates
- * Obtain new constraints to entropy generation
- * Understand subtleties of fat/massive graviton theories
- * Analyze new axion search data

Axions solve the strong CP problem

* Strong interaction violates CP through θ -vacuum term

$$\mathcal{L}_{\text{CPV}} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$$

* Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \text{e cm}$$

 $\theta \lesssim 10^{-10}$

Axions solve the strong CP problem

* Strong interaction violates CP through θ -vacuum term

$$\mathcal{L}_{\text{CPV}} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$$

* Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ e \ cm$$
$$\theta \lesssim 10^{-10}$$

* New field (axion) and U(1) symmetry dynamically drive net CP-violating term to 0

$$\mathcal{L}_{\text{CPV}} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\text{a}}} g^2 G\tilde{G}$$

Axions solve the strong CP problem

* Strong interaction violates CP through θ -vacuum term

$$\mathcal{L}_{\text{CPV}} = \frac{\theta g^2}{32\pi^2} G\tilde{G}$$

* Limits on the neutron electric dipole moment are strong. Fine tuning?

$$d_n \simeq 10^{-16} \ \theta \ \text{e cm}$$
$$\theta \lesssim 10^{-10}$$

 \star New field (axion) and U(1) symmetry dynamically drive net CP-violating term to 0

$$\mathcal{L}_{\text{CPV}} = \frac{\theta g^2}{32\pi^2} G\tilde{G} - \frac{a}{f_{\text{a}}} g^2 G\tilde{G}$$

* Through coupling to pions, axions pick up a mass

$$m_{
m a} \simeq rac{m_{\pi} f_{\pi}}{f_{
m a}} rac{\sqrt{z}}{1+z} \; ,$$

$$z \equiv m_{\rm u}/m_{\rm d}$$

Axion models and EM couplings

- st Axions interact weakly with SM particles $\Gamma, \sigma \propto lpha^{2}$
- * Axions have a two-photon coupling

$$g_{a\gamma\gamma} = -\frac{3\alpha}{8\pi f_{a}} \xi$$

$$\xi \equiv \frac{4}{3} \left\{ E/N - \frac{2(4+z)}{3(1+z)} \right\}$$

 $*\xi$ is model-dependent and may vanish

$$\xi = \frac{4}{3} \left\{ E/N - 1.92 \pm 0.08 \right\}$$

2 axion populations: Cold axions

- st Before PQ symmetry breaking, heta is generically displaced from vacuum value
- * EOM: $\ddot{\overline{\theta}} + 3H\overline{\theta} + m_{\rm a}^2(T)\overline{\theta} = 0$ $m_{\rm a}(T) \simeq 0.1 m_{\rm a}(T = 0) (\Lambda_{\rm QCD}/T)^{3.7}$
- * After $m_{\rm a}\left(T\right)\gtrsim 3H\left(T\right)$, coherent oscillations begin, leading to $n_{\rm a}\propto a^{-3}$
- * Relic abundance $\Omega_{\rm a}h^2 \simeq 0.13 \times g\left(\theta_0\right) \left(m_{\rm a}/10^{-5}{\rm eV}\right)^{-1.18}$
- * Particles are cold

Galaxy clusters are axion reservoirs

* ~eV Axions will fall into cluster potential wells

$$\langle v_{\rm a}^2/c^2 \rangle^{1/2} = 4.9 \times 10^{-4} m_{\rm a,eV}^{-1} \rightarrow v_{\rm a} \lesssim 1000 \text{ km s}^{-1}$$

* Generalization of Gunn-Tremaine bound for bosons is unrestrictive for clusters

$$x_{\rm a}^{\rm max} \sim 10^{-2} m_{\rm a,eV}^4 \left(\frac{a}{250 \ h^{-1} \rm kpc}\right)^2 \left(\frac{\sigma}{1000 \ {\rm km \ s^{-1}}}\right)$$
 $x_a = \Omega_a/\Omega_m$

* 10^{77} hot axions in a 10^{14} M_{\odot} cluster

Axion decay

* Axion decays monochromatically via $a \to \gamma \gamma$ with $\lambda_a = 3$ in source frame

$$\lambda_a = \frac{24,800\text{Å}}{m_{\text{a,eV}}}$$

* For galaxies/clusters, line comparable to sky background

$$I_{\lambda_0} = 2.68 \times 10^{-18} \times \frac{m_{\rm a,eV}^7 \xi^2 \Sigma_{12} \exp\left[-\left(\lambda_{\rm r} - \lambda_{\rm a}\right)^2 c^2 / \left(2\lambda_a^2 \sigma^2\right)\right]}{\left(\frac{\sigma}{1000 \text{ km s}^{-1}}\right) (1 + z_{\rm cl})^4 S^2 (z_{\rm cl})} \times \text{ergs s}^{-1} \text{ cm}^{-2} \text{Å}^{-1} \text{arcsec}^{-2}$$

$$\Sigma_{12} \equiv \Sigma / (10^{12} M_{\odot} \text{ pixel}^{-2})$$
 $\lambda_r = \lambda_o / (1 + z_{cl})$
 $S(z_{cl}) \equiv d_a(z_{cl}) / [c / (100 \text{ km s}^{-1} \text{ Mpc}^{-1})]$

* First attempt made at KPNO 2.1m using Gold spectrograph on Abell clusters A1413, A2218, and A2256: $3 \text{ eV} \leq m_{\rm a} \leq 8 \text{ eV}$

$$\xi \le 0.08$$

Are we kidding ourselves? No!

More general constraints

Lensing maps

- Cluster galaxies selected by redshift
- BCG, galaxies near arcs, cluster-scale mass component modeled individually
- PIEMD (Pseudo-isothermal elliptical mass distribution) assumed

$$\Sigma(R) = \frac{\Sigma_0 r_0}{1 - r_0/r_t} \left(\frac{1}{\sqrt{r_0^2 + R^2}} - \frac{1}{\sqrt{r_t^2 + R^2}} \right)$$

Remaining galaxies modeled as ensemble with M/L= $CL^{0.3}$ $r_0 = D\sqrt{L}$

SN1987A v Burst duration

of Kamio events

Pitfalls of direct axion searches

Pitfalls of direct axion searches

- * Searches using non-vanishing nuclear couplings (resonant detection of solar axions using Fe, Kr, and Li) yielding first results
- * Other model independent constraints desirable

<u>RDCS</u> 1252

Kination

* Kination refers to an epoch (typically pre-BBN) during which the universe's energy budget is dominated by the *kinetic* energy of a scalar field

$$T/V = \dot{\phi}^2/2V(\phi) \gg 1 \to w = \frac{\dot{\phi}^2/2 - V(\phi)}{\dot{\phi}^2/2 + V(\phi)} \simeq 1$$
 $\rho \propto a^{-3(1+w)} \quad H \propto T^3$

- * Kination may alleviate the challenges of EW baryogenesis and be relevant in quintessential inflation
- * No entropy generation during kination, so kination complements LTR
- * Analysis does not rely on details of kination models, general for models with $H = H_{\rm rad} (T/T_{\rm kin})$ until $T_{\rm kin}, H = H_{\rm rad}$ afterwards
- * Past work considered neutralino abundance in kination models. *New work: LSS/CMB/total density constraints to hot axions in kination models*

Axion abundance in LTR

- * Higher $T_{\rm F}$ means higher initial equilibrium abundance
- * Entropy generation dramatically suppresses abundances:

$$\Omega_{\rm a}h^2 = \frac{m_{\rm a,eV}}{130} \left(\frac{10}{g_{*_{\rm S},{
m F}}}\right) \gamma \left(T_{
m rh}/T_{
m F}\right).$$

$$\gamma(\beta) \sim \begin{cases} \beta^5 \left(rac{g_{*,\mathrm{rh}}}{g_{*,\mathrm{F}}} \right)^2 \left(rac{g_{*_{\mathrm{S}},\mathrm{F}}}{g_{*_{\mathrm{S}},\mathrm{rh}}} \right) & \text{if } \beta \ll 1, \\ 1 & \text{if } \beta \gg 1 \end{cases}$$

* Abundance suppression less dramatic in kination case due to lack of entropy generation:

$$\Omega_{\rm a}h^2 = \frac{m_{\rm a,eV}}{130} \left(\frac{10}{g_{*s,F}}\right)$$

with different $g_{*_{\rm S},{\rm F}}$

Axion temperature in LTR

* Entropy generation leads to $T_{\rm a} \propto a^{-1}$, while $T_{\gamma} \propto a^{-3/8}$:

$$\frac{T_{\rm a}}{T_{\nu}} \approx (10.75/g_{*_{\rm S},{
m F}})^{1/3}, \quad \text{if } T_{
m F} < T_{
m rh}.$$

$$\frac{T_a}{T_{\nu}} \simeq \left(\frac{11}{4}\right)^{1/3} \left(\frac{T_{\rm rh}}{T_{\rm F}}\right)^{5/3} \left(\frac{g_{*,\rm RH}^2 g_{*_{\rm S},0}}{g_{*,\rm F}^2 g_{*_{\rm S},\rm RH}}\right)^{1/3} \quad \text{if } T_{\rm F} > T_{\rm rh}.$$

* Axions non-relativistic earlier: Smaller free-streaming length!

$$\lambda_{\mathrm{fs}} \simeq \frac{196 \; \mathrm{Mpc}}{m_{\mathrm{a,eV}}} \left(\frac{T_{\mathrm{a}}}{T_{\nu}}\right) \left\{1 + \ln\left[0.45 m_{\mathrm{a,eV}} \left(\frac{T_{\nu}}{T_{\mathrm{a}}}\right)\right]\right\}.$$

* In the kination case, $\frac{T_{\rm a}}{T_{\nu}} \approx (10.75/g_{*_{\rm S},{
m F}})^{1/3}$, with different $g_{*_{\rm S},{
m F}}$

New constraints

* In the case of kination, the new constraints are less dramatically different: If $T_{\rm kin} \simeq 10~{
m MeV}$, the allowed regions are $m_{\rm a} \lesssim 3.2~{\rm eV}$ and $17~{
m eV} \lesssim m_{\rm a} \lesssim 26~{\rm eV}$. If $T_{\rm kin} \gtrsim 110~{
m MeV}$, standard results are recovered.

Subtleties

- * Non-equilibrium production
- * $T_{\rm F} \gtrsim 200~{\rm MeV}$ necessitates use of different cross sections
- * At low values of m_a , coherent oscillation may become important
- * For very low $T_{\rm rh}$, ν may not have time to thermalize, and π may fall out of equilibrium
- * All these effects negligible for $T_{\rm rh} \gtrsim 10~{
 m MeV}$ and $m_{\rm a} \gtrsim 0.6~{
 m eV}$

New constraints

* In the case of kination, the new constraints are less dramatically different: If $T_{\rm kin} \simeq 10~{
m MeV}$, the allowed regions are $m_{\rm a} \lesssim 3.2~{\rm eV}$ and $17~{
m eV} \lesssim m_{\rm a} \lesssim 26~{\rm eV}$. If $T_{\rm kin} \gtrsim 110~{
m MeV}$, standard results are recovered.

Future surveys

- * LSST predicted to reach $\Delta P/P \sim 10^{-2}$ for a sample population similar to SDSS main
- * Assuming 21-cm or Ly α observations on very small comoving scales, limits at low reheating temperatures may be improved

More details on Helium

- * N_{ν}^{eff} contributes to H(T) during radiation domination, setting the abundance of ${}^{4}\mathrm{He}$
- st For fixed η , $\Delta N_{
 u}^{
 m eff}=rac{\Delta Y_p}{0.016}$
- st Folding in systematic errors, current measurements yield constraint $N_{
 u}^{
 m eff} \leq 3.8$
- st $Y_{
 m p}$ affects ionization history, and thus CMB TT, TE, and EE spectra
- * CMBPol may begin to impose interesting constraints to axions and LTR

Post-merger predictions

- * Solutions asymptote to properties of most massive progenitor in EMR limit
- * Less concentrated halos are the least bound. For $p \sim 1$, the merger is less bound than it is massive, forcing very low concentration
- ★ Adding 2-halo terms generally adds more potential energy than kinetic energy → more bound halos with higher c
- * Non-virial contribution to kinetic energy \rightarrow lower |E| at fixed $c \rightarrow$ higher c values

Existing models of the scatter

* NFW model: Scale density of halo set when its 'progenitor' collapses

$$P\left(>fM,z|M,z_{0}\right)=\operatorname{erfc}\left\{\frac{\delta_{\operatorname{crit}}\left(z_{\operatorname{coll}}\right)-\delta_{\operatorname{crit}}\left(z\right)}{\sqrt{2\left[\sigma^{2}\left(fM\right)-\sigma^{2}\left(M\right)\right]}}\right\}\equiv\frac{1}{2}$$

$$\delta_c(M|f) \propto \left[1 + z_{\text{coll}}(M,f)\right]^3$$
 — Prediction for c!

* Scatter in c set by scatter in $z_{\rm coll}$: Real collapse is probabilistic and halos of given M collapse at different times

$$\Delta \delta_c = 3\delta_c \Delta z_{\text{coll}} / (1 + z_{\text{coll}})$$

* Bullock et al. model: Scale *radius* of halo set when its `progenitor' collapses (no dependence on `observation epoch')

$$\sigma(fM) = \delta_{\text{crit}}(z_{\text{coll}})$$
 $r_s(M) = r_{\text{vir}}(fM, z_{\text{coll}})/K$

*Followed by `inside-out' accretion onto a seed of mass fM and scale radiuss

$$c(M, a) = r_{\text{vir}}(M, a) / r_{\text{s}}(M)$$

* Scatter still set by scatter in z_{coll}

$$\Delta c = c\Delta z_{\rm coll}/\left(1 + z_{\rm coll}\right)$$

Linear calculation of M- γ scattering

We expect a lack of high-frequency gravitationally lensed images if a cutoff exists

* For an elastic collision, external field approach/Feynman rules yield (for small angles)

$$\frac{d\sigma}{d\Omega} = \frac{(4GM)^2}{(c\theta)^4} e^{-2k_\gamma\theta/\mu} \qquad \qquad \text{With a cutoff} \longrightarrow \quad \theta = \frac{4GM}{c^2b} F\left(2\theta k_\gamma/\mu\right)$$
$$F(x) = \sqrt{(1-x)e^{-x} - x^2 \text{Ei}\left(-x\right)} \quad \text{Ei}\left(x\right) \equiv -\int_{-x}^{\infty} e^{-t} dt/t$$

* $|k_{\gamma,f} - k_{\gamma,i}| \simeq k_{\gamma}\theta > \mu$ deflections are suppressed

Functional form of cutoff is irrelevant

To higher <u>order</u> in the eikonal limit...

- * Perturbative QG is non-renormalizable (loop diagrams are infinite!)
- In the eikonal limit $s=-(p_1+p_2)^2\gg t=-(p_1-p_3)^2$, divergent diagrams are suppressed by powers of $\gamma=\frac{s}{M_{\rm pl}^2}$ and are dropped to yield result convergent at all orders

$$\mathcal{M} = \mathcal{M}_{\mathrm{Born}} imes rac{\Gamma\left(1 - ilpha(s)
ight)}{\Gamma\left(1 + ilpha(s)
ight)} imes \left(rac{4k_{\mathrm{IR}}^2}{-t}
ight)^{-ilpha(s)} lpha = 2GME_{\gamma} \quad ext{Kabat and Ortiz 92}$$

* We are deep in the eikonal limit $-t \simeq \frac{\left(h\nu\theta\right)^2}{4} \ll -s \simeq M^2$

To higher <u>order</u> in the eikonal limit...

$$p_1 \sim p_3 \sim p_4 \sim p_4$$

- * Perturbative QG is non-renormalizable (loop diagrams are infinite!)
- * In the eikonal limit $s=-(p_1+p_2)^2\gg t=-(p_1-p_3)^2$, divergent diagrams are suppressed by powers of $\gamma=\frac{s}{M_{\rm pl}^2}$ and are dropped to yield result convergent at all orders

$$\mathcal{M} = \mathcal{M}_{Born} e^{-q/\mu} \times \frac{\Gamma(1 - i\alpha(s))}{\Gamma(1 + i\alpha(s))} \times \left(\frac{4k_{IR}^2}{-t}\right)^{-i\alpha(s)} e^{iq/\mu} \quad \alpha = 2GME_{\gamma}$$

We repeat the exercise with a cutoff at each propagator

* In the eikonal limit our tree-level result for is exact up to a phase \mathcal{M} , so the tree-level cross-section is exact

Concentrations and galaxies

- * Baryons collapse and cool, force adiabatic contraction of halo (Blumenthal 86)
- st `Explains' Tully-Fisher (TF) relation $\,L \propto v_{
 m c}^3$
- * Scatter relevant for expected scatter in TF relation
- * Relevant for setting size of galactic bulge (GALFORM)

Concentrations and galaxies

- * Baryons collapse and cool, force adiabatic contraction of halo (Blumenthal 86)
- * `Explains' Tully-Fisher (TF) relation $L \propto v_{
 m c}^3$
- * Scatter relevant for expected scatter in TF relation
- * Relevant for setting size of galactic bulge (GALFORM)

Axion abundance in LTR

- * Higher $T_{\rm F}$ means higher initial equilibrium abundance
- * Entropy generation dramatically suppresses abundances:

abundances:
$$\Omega_{\rm a}h^2 = \frac{m_{\rm a,eV}}{130} \left(\frac{10}{g_{*\rm s,F}}\right) \gamma \left(T_{\rm rh}/T_{\rm F}\right),$$

$$\gamma(\beta) \sim \begin{cases} \beta^5 \left(\frac{g_{*,\text{rh}}}{g_{*,\text{F}}}\right)^2 \left(\frac{g_{*,\text{F}}}{g_{*,\text{F}}}\right) & \text{if } \beta \ll 1, \\ 1 & \text{if } \beta \gg 1 \end{cases}$$

