A Telescope Search for Decaying Relic Axions

(astro-ph/0611502)

D. Grin, G.Covone, J-P. Kneib, M. Kamionkowski, A.W. Blain, E.Jullo

Outline

Whence axions?
Axionic Dark Matter
Clusters are Axion Laboratories
VLT Search for Axions in A2667/A2390
Prying open parameter space (modified reheating!)
Results/Prospects

CP violation in the strong sector

—— Naive QCD Vacuum contains degenerate family of pure gauge vacua connected by instantons (tunneling).

— Periodic symmetry demands θ – vacuum : $|\theta\rangle = \sum e^{in\theta} |\mathbf{A}_n\rangle$

— [Amplitudes in θ – vacuum have additional term in $\mathcal{L}_{\text{effective}}$:

$$\mathcal{L}_{CPV} = \underbrace{\frac{\theta g^2}{32\pi^2} G\tilde{G} \to \text{CP violation!}}_{10^{-16} \text{ o}}$$

 $d_n \sim 10^{-16} \ \theta \ \mathrm{e \ cm}$

— Neutron electric dipole moment (NEDM) is highly constrained by exp't:

$$\theta \ll 10^{-10}$$

Axions solve the strong CP problem

Unnatural? Throw in a (pseudo) scalar! $L_a = -(a/f_{PQ}) GG$

Axions have mass:

$$m_a \simeq \frac{m_\pi f_\pi}{(f_{PQ}/N)} \frac{\sqrt{z}}{1+z}$$

$$z \equiv \frac{m_u}{m_d}$$

$$V(a) = m_{\pi}^2 f_{\pi}^2 \frac{z}{(1+z)^2} \left\{ 1 - \cos\left[\left(\frac{a}{f_{PQ}/N}\right) + \theta\right] \right\}$$

Axion flavors

DFSZ (strongly coupled) vs KSVZ (hadronic) axion models

$$\{ (\tau(a \to \gamma \gamma) \simeq 6.8 \times 10^{24} \xi^{-2} m_{\rm a,eV}^{-5} \text{ sec}), \xi \equiv \frac{4}{3} (E/N - 1.92 \pm 0.08) \}$$

Weak couplings to SM \rightarrow Axions are dark matter! $\Gamma, \sigma \propto \alpha^2$

Cold and bound today:

$$\langle v_a^2/c^2 \rangle^{1/2} = 4.3 \times 10^{-4} m_{a,eV}^{-1}$$

Axionic dark matter: More on ξ

$$\left(\xi = \frac{4}{3} \left\{ \frac{E}{N} - \frac{2(4+z)}{3(1+z)} \right\} \right)$$

Two-photon coupling plagued by high theoretical uncertainties: Moroi and Murayama 1998

Kaplan-Manohar ambiguity: m_{π}^{i} are invariant under $m_{u} \to m_{u} + \epsilon m_{d}^{*}$ $m_{d} \to m_{d} + \epsilon m_{u}^{*}$

Baryon masses help but $\delta z \sim \mathcal{O}(50\%)$.

Chiral perturbation theory is only good to about 10% for f_{π} .

 $\{ \xi \equiv (4/3) [E/N - 1.92 \pm 0.75] \}$ may be closer to truth.

So even for DFSZ models (E/N=8/3), ξ may vanish in theory.

Axionic dark matter: Thermal production

If $m_{a,eV} \ge 10^{-2} \text{ eV}$, then axions are produced thermally.

$$T_{\rm d} \simeq 30 - 50 \, {\rm MeV}$$

Chang/Choi (1993) follow relevant reactions numerically

In this regime, $\Omega_{\rm a} h^2 = 0.007 \ m_{\rm a,eV} (10/g_{*,D})$

Axionic dark matter: Non-thermal production

- After axions pick up mass at QCD phase transition, coherent oscillations follow: $\ddot{a} + 3H\dot{a} + m_a^2(T) a = 0$.
- Eventually axions settle to their zero-T rest-mass ('freeze-out'), yielding an abundance: $\Omega_{\rm a}h^2=1.1\times 10^{-6}m_{\rm a,eV}^{-1.175}$
- These axions form a zero-momentum condensate, and thus behave like CDM.

Axionic dark matter: Big picture

Thermal production $(m_{\rm a,eV} > 10^{-2})$:

$$\Omega_{\rm a}h^2 = 0.08 \left(\frac{m_{\rm a,eV}}{11}\right) \left(\frac{10}{g_{*,\rm D}}\right)$$

Nonthermal production ($m_{\rm a,eV} < 10^{-2}$):

$$\Omega_{\rm mis} h^2 \approx 1.1 \times 10^{-6} m_{a, {\rm eV}}^{-1.175}$$
.

Mass windows of interest:

$$5 \times 10^{-5} < m_{\rm a,eV} < 10^{-3} \quad 0.004 < \Omega_{\rm a} < 0.25$$

$$3 < m_{\rm a,eV} < 8 \quad 0.04 < \Omega_{\rm a} < 0.12$$

$$8 < m_{\rm a,eV} < 14 \quad 0.12 < \Omega_{\rm a} < 0.21$$

Galaxy clusters are axion laboratories

Phase space aplenty:

$$x_{\rm a}^{\rm max} = 10^{-2} m_{\rm a,eV}^4 a_{250}^2 g_{\rm a} \sigma_{1000}$$

$$x_{\rm a} = \frac{\Omega_a}{\Omega_m}$$

Density vs. lifetime

Detectability:

$$\lambda_{a} = 24,800 \text{Å} (1 + z_{\text{cl}}) m_{\text{a,eV}}^{-1}$$

$$I_{\lambda} = \frac{6.8 \times 10^{-21} m_{\text{a,eV}}^{7} \xi^{2} \Sigma / (\text{g cm}^{-2}) e^{\frac{-(\lambda_{\text{r}} - \lambda_{\text{a}})^{2}}{\lambda_{\text{a}}^{2}} \frac{c^{2}}{2\sigma^{2}}}}{\sigma_{1000} (1 + z_{\text{cl}})^{4} S^{2} (z_{\text{cl}})} \text{cgs}$$

First attempts-A2218/A1413/A2256 at KPNO (2.1m):

$$3 < m_{\rm a,eV} < 8, \xi \le 0.08$$
 (Bershady et al. 1991).

Galaxy clusters are axion laboratories: Why does it pay to look again?

Better telescopes: 8.1m vs 2.0 m!

Better spectrographs: Integral field spectroscopy allows optimal use of cluster density profile to optimize S/N and sky subtraction

Better mass profiles: Cluster lensing maps

(Parameter space is wide open)

Data: VIMOS spectroscopy

- Visible Multi-Object Spectrograph (VIMOS) IFU, mounted at UT3 at Paranal (largest fov of any IFU). 6400 fibers in 4 quadrants.
- A2667/A2390 observed 06/27/06-06/30/06. 0.67"/fiber resolution mode used $\rightarrow 54$ " $\times 54$ " covered by IFU
- [LR-Blue grism (sufficient to resolve 195Å $\sigma_{1000}~m_{\rm a,eV}^{-1}$ FWHM of axion line)
 - A2667: 10.8 ksec integration time (1 pointing)
 - A2390: 10.8 ksec integration (3 pointings)
 - Cosmic Rays are removed

Data: Cluster mass maps

Multi-component mass model constructed using lenstool (Kneib 1993)

PIEMD (pseudo-isothermal spheres) used for each component

Faber-Jackson like scaling relations used for smaller scale components (Covone et al. 2006, A2667; A2390 in prep)

Data Analysis I

- [4.5-7.7 eV window probed ($z \simeq 0.23, 4000 \text{Å} < \lambda < 6800 \text{Å}$)
- Bright sources are masked (HST images)
- Using lensing map (HST), extract density-correlated signal.
 Data Cube → 1D mean spectrum of clusters:

$$\overline{I_{\lambda,i}^{\text{mod}} = \langle I_{\lambda}/\Sigma_{12} \rangle \Sigma_{12,i} + b_{\lambda}}$$

Data analysis II

Careful noise model includes: Poisson Noise, fiber cross-talk, readnoise, flat-fielding, bias, statistical errors in mass map.

Signal sought via visual inspection, cross-correlation methods

$$g(l) = \frac{\int I_1(x)I_2(x+l)dx}{\left[\int I_1^2(x)dx \int I_2^2(x)dx\right]^{1/2}},$$

$$x = \ln \lambda$$

Results

Limit imposed via:

$$\xi \le \sqrt{\frac{\sigma_{1000}(1+z_{\rm cl})^4 S^2(z_{\rm cl}) m_{\rm a,eV}^7(\lambda) \langle I_{\lambda}/\Sigma_{12}\rangle}{2.30 \times 10^{-18} \text{ cgs}}}$$

 Higher redshift clusters sensitive to weaker coupling

$$I_{\lambda} \propto m_{\rm a}^7 (1 + z_{\rm cl})^{-4} \xi^2$$

 $m_{\rm a} = 24,800 \text{Å} (1 + z_{\rm cl}) / \lambda_{\rm a}$
 $I_{\lambda} \propto \xi^2 (1 + z_{\rm cl})^3$
 $\xi \propto I_{\lambda}^{1/2} (1 + z_{\rm cl})^{-3/2}$

Results

- Limits implied by past work re-calculated to take account of
- a) Better measurements of cosmo parameters,
- b) Better measurements of cluster mass profiles

Simulations

IFUs are messy!

To model systematics, 'fake' lines inserted with variety of ξ values

Routine that generates 1D spectra applied to 'fake' cubes.

Independent constraints on ~eV axions: Axion free streaming/ISW effect

Light axions (~eV) are relativistic at early times; free-streaming erases structure on comoving scales

$$(l < \lambda_{\rm fs} = [19 \text{ Mpc}/(\Omega_{\rm a}h^2)] \{ 1 + \ln \left[1.2 \left(\frac{\Omega_{\rm a}h^2}{\Omega_{\rm m}h^2} \right) \right] \},$$
 leading to suppression in galaxy power spectrum.

Even lighter axions act like radiation at decoupling, amplifying decaying potential modes and leading to an enhanced ISW effect (Hu/Sugiyama 1995).

Hannestad et al. 2005 use this idea to derive a constraint $m_a < 1.05 \text{ eV}$

Relaxing our assumptions

LSS/CMB limits assume thermal production (TP)

 $\Omega_{\rm a}h^2$ is a free parameter if TP assumption dropped

New Constraint:

$$\xi \sqrt{\Omega_{\rm a} h^2} \le \left[\frac{\sigma_{1000} (1 + z_{\rm cl})^4 S^2(z_{\rm cl}) m_{\rm a, eV}^6(\lambda) \left\langle \frac{I_{\lambda}}{\Sigma_{12}} \right\rangle}{3.48 \times 10^{-16} \text{ cgs}} \right]^{1/2}$$

Why relax our assumptions? Modified reheating....

Kawasaki and Kohri 1999, Giudice, Kolb, Riotto, Semikoz, and Tkachev 2000

- Solid understanding of cosmic thermal history up to 1 MeV (BBN): We should be agnostic at higher energy scales.
- After inflation, we think the universe (pre)-reheats, creating a finitetemperature radiation bath, in EQ with SM particles. Energy density of this bath defines a temperature T
- Suppose (pre)-reheating is driven by some decaying scalar field with finite lifetime Γ_{ϕ} :

$$\begin{array}{c} \phi \to \gamma \gamma \\ \gamma \gamma \to XX \end{array}$$

Reheating temperature defined by $\left[\Gamma_{\phi} = H\left(T_{\rm rh}\right)\right]$

$$\Gamma_{\phi} = H\left(T_{\mathrm{rh}}\right)$$

More on extended reheating

- Interesting to consider consequences of lower (~MeV) reheating temperature
- Entropy continually dumped from scalar field to radiation
- \vdash Temperature falls slower than $T \propto 1/a \longrightarrow T \propto a^{-3/8}$
- Steeper dependence of scale factor on temperature → higher H.
- Chemical equilibrium requires $n\langle \sigma v \rangle/H > 1$: harder with higher H.

Some species never freeze out at all

Others freeze-out earlier

Lower abundances for given mass!

Extended reheating conclusions

From solution of Boltzmann equation, can see abundance of hot relics for a given mass is suppressed

Constraints on neutrino mass from $\Omega_{\nu}h^2 < (1, 0.007)$ nearly lifted

Using relevant axion cross section

$$\langle \sigma v \rangle \approx \frac{(1+z)^2 T^2 m_{\rm a}^2}{z m_{\pi}^2 f_{\pi}^2} \longrightarrow$$

$$\Omega_{\rm a}h^2 \approx 7.3 \times 10^{-7} m_{\rm a,eV}^3 (T_{\rm rh}/{\rm MeV})^3 [10/g_* (T_{\rm rh})]^{3/2}$$

Recent excitement & future work

- Conservative improvement on past constraints to ξ of \sim 3
- Results free of dynamical assumptions about cluster
- Robust exclusion of naive DFSZ/KSVZ models
- Proof of technique:
 - RDCS1252 (z=1.2) will probe new swathe of parameter space.
 - PVLAS- Axion signal?

Summary

- Axions solve the strong CP problem
 - Axions are a promising dark matter candidate
- Presently, cluster spectra offer tight constraints to ξ
- Future work) on high-z clusters will seek 8-14 eV axions that may have very weak two-photon couplings).
 - First use of IFU spectroscopy to constrain nature of DM