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OUTLINE

Cosmological Recombination in a nutshell 

Breaking the naive model

Why should you care? Effects on CMB, inferences about primordial 
physics

Our tools

Preliminary results!
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A BRIEF MESSAGE FROM YOUR PROVIDER

Take-home message for the narcoleptic:                                              
To bring theoretical uncertainties well within the error budget of 
Planck and other next generation CMB experiments, very high 
excitation (n>100) states of the hydrogen atom must be included in 
recombination calculations, with different angular momentum (l) 
substates separately resolved.

I will not talk about QCD’s Dyson-Schwinger equations. Sorry!
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Chemical equilibrium does reasonably well predicting 
“moment of recombination”

SAHA EQUILIBRIUM IS INADEQUATE
p + e− ↔ H(n) + γ(nc)

Further evolution falls prey to reaction freeze-out

xe = 0.5 when T = Trec ! 0.3 eV

x2
e

1− xe
=

(
13.6
TeV

)3/2

e35.9−13.6/TeV

Γ =6 × 10−22 eV xe (T ) (13.6/TeV)−5/2 ln (13.6/TeV)
H = 1.1× 10−26 eV T 3/2

eV

Γ < H when T < TF ! 0.25 eV

zrec ! 1300
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Redshifting off resonance

Two-photon processes

BOTTLENECKS AND ESCAPE ROUTES

Ground state recombinations are ineffective

Resonance photons are re-captured, e.g. Lyman 

BOTTLENECKS

ESCAPE ROUTES (e.g. n=2)

α

τ−1
c→1s = 10−1 s−1 ! H " 10−12 s−1
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EQUILIBRIUM ASSUMPTIONS

Radiative eq. between different n-states

Radiative/collisional eq. between different l

Matter in eq. with radiation due to Thompson scattering

Tm = Tγ since σTaT 4
γ c

mec2 < H(T )
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THE PEEBLES PUNCHLINE

Only n=2 bottlenecks are treated

Net Rate is suppressed by bottleneck vs. escape factor
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THE PEEBLES PUNCHLINE

Net Rate is suppressed by bottleneck vs. escape factor
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Redshifting term

THE PEEBLES PUNCHLINE

Net Rate is suppressed by bottleneck vs. escape factor
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THE PEEBLES PUNCHLINE

Net Rate is suppressed by bottleneck vs. escape factor
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Ionization Term

THE PEEBLES PUNCHLINE

Net Rate is suppressed by bottleneck vs. escape factor
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THE PEEBLES PUNCHLINE

Net Rate is suppressed by bottleneck vs. escape factor

redshift term
2γ term

! 0.02
Ω1/2

m

(1− xe [z])
(

1+z
1100

)3/2

2γ process dominates until late times (z ! 850)

Ωm
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Ωbh2
Ωmh2

State of the Art for 30 years!

PEEBLES MODEL ASSUMPTIONS/RESULTS
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Radiation field is cool:  Boltzmann eq. of higher n

Treated by Seager et al. (2000) 

Equilibrium between l states

Treated by Chluba et al. (2005) for 

Radiation and matter field fall out of eq.

nmax = 300

BREAKING THE NAIVE MODEL

RecFAST!!!

nmax = 100

Higher-order 2γ transitions, (Hirata, Ali-Haimoud, in progress)

˙TM + 2HTm =
8xeσTaT 4

γ

3mec (1 + fHe + xe)
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DECOUPLING OF MATTER AND RADIATION

nmax = 120

500 1000 1500
0.7

0.8

0.9

1
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Radiation field is cool:  Boltzmann eq. of higher n

Treated by Seager et al. (2000) 

Equilibrium between l states

Treated by Chluba et al. (2005) for 

Beyond this, testing convergence with          is hard!

nmax = 300

BREAKING THE NAIVE MODEL

RecFAST!!!

nmax = 100

nmax

How to proceed if we want 0.1% accuracy in          ?xe(z)
12

12Wednesday, September 2, 2009



THE EFFECT OF RESOLVING  
- SUBSTATES 

Putting free-electrons in ‘bottlenecked’ l-substates 
slows down the decay to 1s: Recombination is slower

l
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Radiation field is cool:  Boltzmann eq. of higher n

Treated by Seager et al. (2000) 

Eq. between l states: dipole selection bottleneck: 

Treated by Chluba et al. (2005) for 

Beyond this, testing convergence with          is hard!

nmax = 300

BREAKING THE NAIVE MODEL

RecFAST!!!

nmax = 100

nmax

WHY PROCEED?
14
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                  :Decoupling occurs during recombination

WHO CARES? 
I. SMEARING AND MOVING THE SURFACE OF LAST 

SCATTERING (SLSS)
Photons kin. decouple when Thompson scattering freezes out

Γ = neσTc = 2.2× 10−19 s−1 xeΩbh2

a3
=

H = H0Ω1/2
m a−3/2

[
1 +

aeq

a

]1/2

γ + e− ⇔ γ + e−

zdec ! 1100
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WHO CARES? 
II. THE SILK DAMPING TAIL

From Wayne Hu’s website

!D"N
1/2!C

N=#/!C

Inhomogeneities are damped for λ <λ D

ldamp ∼ 1000
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WHO CARES? 
III. FINITE THICKNESS OF THE SLSS

Additional damping of form
|Θl (η0, k)|→| Θl (η0, k)| e−σ2η2

reck2
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WHO CARES? 
IV. CMB POLARIZATION

Need to scatter quadrapole to polarize CMB

Need time to develop a quadrapole

ΘP
l (k) =

∫
dητ̇e−τ(η)ΘT,2 (k, η)

l2

(kη)2
jl (kη)

Θl (kη) ∼ kη

2τ
Θl (kη)" Θl (η) if l ≥ 2, in tight coupling regime
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WHO CARES? 
V. PARAMETER DEGENERACIES

Planck will be CV limited (T and 
E) to 

0.022 0.0225 0.023

!
b
 h

2

0.93 0.94 0.95 0.96 0.97 0.98

n
s

2.98 3 3.02 3.04 3.06

log[10
10

 A
s
]

0.022 0.0225 0.023
Ωb h2

0.93 0.94 0.95 0.96 0.97 0.98
ns

2.98 3 3.02 3.04 3.06
log[1010 As]

l ∼ 2500

Planck  uncertainty 
forecasts using MCMC

0.1% accuracy required in xe (z)
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Bound-free rate equation

THE MULTI-LEVEL ATOM (MLA)

αnl(Ee)

Bound-bound rate equation

−
∫

dEe g(EE − En) xnl f(Ee − Enl)αnl(EE)/gnl

ẋbb
nl =

∑
n′,l′=l±1(A

ll′

nn′(1 + fnn′)xn′,l′ − gn′l′
gnl

fnn′xnl)

ẋbf
nl =

∫
dEePM (Tm, Ee)nHxexp [1 + f(Ee − En)]

P ll
′

nn′
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Bound-free rate equation

THE MULTI-LEVEL ATOM (MLA)

αnl(Ee)

Bound-bound rate equation

−
∫

dEe g(EE − En) xnl f(Ee − Enl)αnl(EE)/gnl

ẋbb
nl =

∑
n′,l′=l±1(A

ll′

nn′(1 + fnn′)xn′,l′ − gn′l′
gnl

fnn′xnl)

ẋbf
nl =

∫
dEePM (Tm, Ee)nHxexp [1 + f(Ee − En)]

P ll
′

nn′

Escape probability of 

Phase-space density blueward of line

γ in line
20
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Bound-free rate equation

Stimulated emission/absorption
THE MULTI-LEVEL ATOM (MLA)

αnl(Ee)

Bound-bound rate equation

−
∫

dEe g(EE − En) xnl f(Ee − Enl)αnl(EE)/gnl

ẋbb
nl =

∑
n′,l′=l±1(A

ll′

nn′(1 + fnn′)xn′,l′ − gn′l′
gnl

fnn′xnl)

ẋbf
nl =

∫
dEePM (Tm, Ee)nHxexp [1 + f(Ee − En)]

P ll
′

nn′
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Bound-free rate equation

Spontaneous Emission
THE MULTI-LEVEL ATOM (MLA)

αnl(Ee)

Bound-bound rate equation

−
∫

dEe g(EE − En) xnl f(Ee − Enl)αnl(EE)/gnl

ẋbb
nl =

∑
n′,l′=l±1(A

ll′

nn′(1 + fnn′)xn′,l′ − gn′l′
gnl

fnn′xnl)

ẋbf
nl =

∫
dEePM (Tm, Ee)nHxexp [1 + f(Ee − En)]

P ll
′

nn′
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THE MULTI-LEVEL ATOM (MLA)

Two photon transitions between n=1 and n=2 are included:

Net recombination rate:
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RATE COEFFICIENTS

Bound-bound rates given by Fermi’s golden rule and matrix element

Power-series destabilizes at high-n, recursion relation used

ρ(n′l′, nl) =
∫ ∞

0
un′l′(r)unl(r)r3dr = C ×

[
F2,1

(
−n + l + 1,−n′ + l, 2l,

−4nn′

(n− n′)2

)

−
(

n− n′

n + n′

)2

F2,1

(
−n + l − 1,−n′ + l, 2l,

−4nn′

(n− n′)2

)2

Bound-free rates at temperature T given by phase space integral of matrix 
element gnl =

∫ ∞

0
unl(r)fEl (r) r3dr

Rates are tabulated at all n and l of interest, at a variety of energies, and 
integrated at each time step
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RATE COEFFICIENTS

Rates are tabulated at all n and l of interest, at a variety of energies, and 
integrated at each time step ρ(n′l′, nl) = a0n

2

∫ π

−π
dτeiΩτ (1 + cosη)

Ω = ωn − ωn′

r = rmax (1 + cos η) /2
τ = η + sin η

Similar WKB approximation can be used to check stability of BF matrix 
elements

Fourier transform of classical orbit! 
Application of correspondence principle!

23
23Wednesday, September 2, 2009



RADIATION FIELD: BLACK BODY+

Escape probability treated in Sobolev approx.

P l,l′

n,n′ =
1− e−τs

τs

Excess line photons injected into radiation field

Photons are conserved outside of line regions

R(ν, ν′) = φ(ν)φ(ν′) vth

H(z)
! λ
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RADIATION FIELD: BLACK BODY+

Escape probability treated in Sobolev approx.

P l,l′

n,n′ =
1− e−τs

τs

Forbes, Hirata, and Ali-Haimoud are solving FP eqn. to 
obtain evolution of         more generally, including 
atomic recoil/diffusion,                and full time-
dependence of problem, coherent and incoherent 
scattering, overlap of higher-order Lyman lines

R(ν, ν′) = φ(ν)φ(ν′)
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Evolution equations may be re-written in matrix form

STEADY-STATE APPROXIMATION 
FOR EXCITED STATES
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Evolution equations may be re-written in matrix form

STEADY-STATE APPROXIMATION 
FOR EXCITED STATES
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Evolution equations may be re-written in matrix form

For state l, includes BB transitions out of l to all other l’’, 
photo-ionization, 

On diag
onal

2γ transitions to ground state

STEADY-STATE APPROXIMATION 
FOR EXCITED STATES
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Evolution equations may be re-written in matrix form

For state l, includes BB transitions into l from all other l’

Off d
iag

onal

STEADY-STATE APPROXIMATION 
FOR EXCITED STATES
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Includes recombination to l, 
1 and 2γ transitions from ground state

Evolution equations may be re-written in matrix form

STEADY-STATE APPROXIMATION 
FOR EXCITED STATES
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Evolution equations may be re-written in matrix form

STEADY-STATE APPROXIMATION 
FOR EXCITED STATES

For n>1, 
R ! 1 s−1 (e.g. Lyman-α)
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RAPID MATRIX INVERSION:
SPARSITY TO THE RESCUE

Matrix is  

Brute force would require       
for a single time step 

Sparsity to the rescue 

∼ 1000 s for nmax = 200n6
max

Ml,l−1!xl−1 + Ml,l!xl + Ml,l+1!xl+1 = !sl

∼ n2
max × n2

max
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RECOMBINATION HISTORIES

          falls with increasing                             , as expected.

Rec Rate>downward BB Rate> Ionization, upward BB rate

For                     , code computes in only 2 hours
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DEVIATIONS FROM BOLTZMANN EQ: HIGH-N
                         .αn ! Abb,down

z = 1573
z = 749
z = 611

z = 474

z = 206

10 100

nmax = 120
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DEVIATIONS FROM BOLTZMANN EQ:
RESOLVING l

30
30Wednesday, September 2, 2009



DEVIATIONS FROM SAHA EQUILIBRIUM

n=1 suppressed due to freeze-out of 

Remaining levels ‘try’ to remain in Boltzmann eq. with n=2

Super-Boltz effects and two-     transitions (n=1      n=2) yield less suppression for n>1

Problem gets worse at late times (low z) as rates fall
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31

HUGE DEVIATIONS FROM SAHA EQ
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TEMPERATURE Cls

Super-horizon scales don’t care about recombination!
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TEMPERATURE Cls

Super-horizon scales don’t care about recombination!

32

Sample variance for Planck
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POLARIZATION Cls

Lower τLSS trump ∆ηLSS effects
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POLARIZATION Cls

Lower τLSS trump ∆ηLSS effects

33

Sample variance for Planck
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ATOMIC COLLISIONS

For fixed n, l-changing collisions bring 
different-l substates closer to statistical 
equilibrium (SE)

Being closer to SE speeds up rec. by 
mitigating high-l bottleneck

Theoretical collision rates unknown to 
factors of 2!

Order-of-magnitude inclusion under way to 
determine if better theory needed for rec.

34
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QUADRAPOLE TRANSITIONS

                transitions may also play a role

Rates are given by

Moments may be evaluated with radial wf. raising/lowering operators

35

Transitions to/from 1s will dominate

Rate can thus be rewritten as an effective                transition rate, 
thus respecting our sparsity pattern

Transitions from nd to 1s will immediately be followed by 
transitions up to mp, etc...
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WRAPPING UP

Line feedback via iterative procedure

Collisions

Quadrapole transitions

Effective source term for omitted higher levels- near Saha eq., should be 
tractable

Full incorporation into CMBFAST/CAMB and analysis of errors/degeneracies 
with cosmo. parameters, including other heretofore bits of atomic physics

To do:

36

Convergence with           of rec. history and CMB 
observables (for Planck, etc...) is now within reach, thanks to 
sparse matrix methods
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