TAPIR

COSMOLOGICAL HYDROGEN RECOMBINATION: THE EFFECT OF HIGH-N STATES Daniel Grin in collaboration with Chris Hirata Caltech

NUPAC Talk

OUTLINE

- Cosmological Recombination in a nutshell
- Breaking the naive model
- Why should you care? Effects on CMB, inferences about primordial physics
- Our tools
- Preliminary results!

SAHA EQUILIBRIUM IS INADEQUATE ${ }^{3 / 29}$

$$
p+e^{-} \leftrightarrow H^{(n)}+\gamma^{(n c)}
$$

- Chemical equilibrium does reasonably well predicting "moment of recombination"

$$
\begin{aligned}
& \frac{x_{e}^{2}}{1-x_{e}}=\left(\frac{13.6}{T_{\mathrm{eV}}}\right)^{3 / 2} e^{35.9-13.6 / T_{\mathrm{eV}}} \\
& \left.x_{e}=0.5 \text { when } T=T_{\mathrm{rec}} \simeq 0.3 \mathrm{eV}\right) \quad z_{\mathrm{rec}} \simeq 1300
\end{aligned}
$$

- Further evolution falls prey to reaction freeze-out

$$
\begin{gathered}
\Gamma=6 \times 10^{-22} \mathrm{eV} x_{e}(T)\left(13.6 / T_{\mathrm{eV}}\right)^{-5 / 2} \ln \left(13.6 / T_{\mathrm{eV}}\right) \\
H=1.1 \times 10^{-26} \mathrm{eV} \mathrm{~T}_{\mathrm{eV}}^{3 / 2} \\
\left.\Gamma<H \text { when } T<T_{\mathrm{F}} \simeq 0.25 \mathrm{eV}\right)
\end{gathered}
$$

BOTTLENECKS AND ESCAPE ROUTES

- BOTTLENECKS
- Ground state recombinations are ineffective

$$
\tau_{c \rightarrow 1 s}^{-1}=10^{-1} \mathrm{~s}^{-1} \gg H \simeq 10^{-12} \mathrm{~s}^{-1}
$$

- Resonance photons are re-captured, e.g. Lyman α

$$
\tau_{2 p \rightarrow 1 s}^{-1}=10^{-2} \mathrm{~s}^{-1} \gg H \simeq 10^{-12} \mathrm{~s}^{-1}
$$

- ESCAPE ROUTES (e.g. n=2)
- Two-photon processes

$$
H^{2 \mathrm{~s}} \rightarrow H^{1 \mathrm{~s}}+\gamma+\gamma \quad \Lambda_{2 \mathrm{~s}-1 \mathrm{~s}}=8.22 \mathrm{~s}^{-1}
$$

- Redshifting off resonance $R \sim\left(n_{\mathrm{H}} \lambda_{\alpha}^{3}\right)^{-1}\left(\frac{\dot{a}}{a}\right)$

EQUILIBRIUM ASSUMPTIONS

- Radiative eq. between different n-states

$$
\mathcal{N}_{n}=\mathcal{N}_{2} e^{-\left(E_{n}-E_{2}\right) / T}
$$

- Radiative/collisional eq. between different 1

$$
\mathcal{N}_{n l}=\mathcal{N}_{n} \frac{(2 l+1)}{n^{2}}
$$

- Matter in eq. with radiation due to Thompson scattering

$$
T_{m}=T_{\gamma} \text { since } \frac{\sigma_{\mathrm{T}} a T_{\gamma}^{4} c}{m_{e} c^{2}}<H(T)
$$

THE PEEBLES PUNCHLINE

- Only n=2 bottlenecks are treated

$$
\Gamma_{\text {net }, \mathrm{H}}=\Lambda_{2 s \rightarrow 1 s}\left[n_{2 s}-n_{1 s} e^{-\left(B_{1}-B_{2}\right) / k T}\right]+\frac{8 \pi}{\lambda_{\alpha}^{3}} \frac{\dot{a}}{a} \times\left(f_{\alpha}-e^{-h \nu_{\alpha} / k T}\right)
$$

- Net Rate is suppressed by bottleneck vs. escape factor

$$
\begin{gathered}
-\frac{d x_{e}}{d t}=\sum_{n, l} \alpha_{n l}(T)\left\{n x_{e}^{2}+(2 l+1) e^{-\left(B_{1}-B_{n}\right) / k T}\left(\frac{2 \pi m_{e} k T}{h^{2}}\right)^{3 / 2}\right\} C \\
\mathcal{C}=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{\alpha}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{C}\right)}
\end{gathered}
$$

THE PEEBLES PUNCHLINE

- Net Rate is suppressed by bottleneck vs. escape factor

$$
\mathcal{C}=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{c}\right)}
$$

THE PEEBLES PUNCHLINE

- Net Rate is suppressed by bottleneck vs. escape factor

$$
C=\xrightarrow{\frac{8 \pi}{\lambda_{a}^{3} n_{1 s}} \frac{\dot{a}}{a}+\Lambda_{2 s \rightarrow 1 s}} \text { Redshifting term }
$$

THE PEEBLES PUNCHLINE

- Net Rate is suppressed by bottleneck vs. escape factor

$$
C=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{c}\right)} \longrightarrow 2 \gamma \text { term }
$$

THE PEEBLES PUNCHLINE

- Net Rate is suppressed by bottleneck vs. escape factor

$$
\mathcal{C}=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{\mathfrak{a}}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{c}\right)} \xrightarrow[\text { Ionization Term }]{ }
$$

THE PEEBLES PUNCHLINE

- Net Rate is suppressed by bottleneck vs. escape factor

$$
\mathcal{C}=\frac{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\Lambda_{2 s \rightarrow 1 s}}{\frac{8 \pi}{\lambda_{\alpha}^{3} n_{1 s}} \frac{\dot{a}}{a}+\left(\Lambda_{2 s \rightarrow 1 s}+\beta_{c}\right)}
$$

$$
\frac{\text { redshift term }}{2 \gamma \text { term }} \simeq 0.02 \frac{\Omega_{m}^{1 / 2}}{\left(1-x_{e}[z]\right)\left(\frac{1+z}{1100}\right)^{3 / 2}}
$$

2γ process dominates until late times $(z \lesssim 850)$

Peebles MODELASSUMPTIONS/RESULTS

- State of the Art for 30 years!

BREAKING THE NAIVE MODEL

- Radiation field is cool: Boltzmann-eq. of higher n
- Treated by Seager et al. (2000) $n_{\max }=300$ RecFAST!!!
- Equilibrium between l states
- Treated by Chluba et al. (2005) for $n_{\max }=100$
- Radiation and matter field fall out of eq.

$$
\dot{T}_{M}+2 H T_{m}=\frac{8 x_{e} \sigma_{\mathrm{T}} a T_{\gamma}^{4}}{3 m_{e} c\left(1+f_{\mathrm{He}}+x_{e}\right)}\left(T_{M}-T_{\gamma}\right)
$$

- Higher-order 2γ transitions, (Hirata, Ali-Haimoud, in progress)

10/29

DECOUPLING OF MATTER AND RADIATION

 s.s.r.
BREAKING THE NAIVE MODEL

- Radiation field is cool: Beltzmann eq. of higher a
- Treated by Seager et al. (2000) $n_{\max }=300$ RecFAST!!!
- Equilibrium between l states
- Treated by Chluba et al. (2005) for $n_{\max }=100$
- Beyond this, testing convergence with $n_{\max }$ is hard!

$$
t_{\text {compute }} \sim \mathcal{O}(\text { weeks })
$$

How to proceed if we want 0.1% accuracy in $x_{e}(z)$?

THE EFFECT OF RESOLVING 1- SUBSTATES

\%.

- Putting free-electrons in 'bottlenecked' 1 -substates slows down the decay to 1 s : Recombination is slower

BREAKING THE NAIVE MODEL

2. Nendx

- Radiation field is cool: Boltzmann eq. of higher n
- Treated by Seager et al. (2000) $n_{\max }=300$ RecFAST!!!
- Eq. between l states: dipole selection bottleneck: $\Delta l= \pm 1$
- Treated by Chluba et al. (2005) for $n_{\text {max }}=100$
- Beyond this, testing convergence with $n_{\max }$ is hard!

$$
t_{\text {compute }} \sim \mathcal{O}(\text { weeks })
$$

I. SMEARING AND MOVING THE SURFACE OF LAST

 SCATTERING (SLSS)- Photons kin. decouple when Thompson scattering freezes out $\gamma+e^{-} \Leftrightarrow \gamma+e^{-}$

$$
\begin{aligned}
\Gamma=n_{\mathrm{e}} \sigma_{\mathrm{T}} c & =2.2 \times 10^{-19} \mathrm{~s}^{-1} \frac{x_{e} \Omega_{b} h^{2}}{a^{3}}= \\
H & =H_{0} \Omega_{m}^{1 / 2} a^{-3 / 2}\left[1+\frac{a_{\mathrm{eq}}}{a}\right]^{1 / 2}
\end{aligned}
$$

$z_{\mathrm{dec}} \simeq 1100$:Decoupling occurs during recombination

$$
C_{l} \rightarrow C_{l} e^{-2 \tau} \quad \text { if } l>\frac{\eta_{\text {rec }}}{\eta_{\text {hor }}}
$$

$$
\tau=\int_{0}^{\eta_{\mathrm{dec}}} d \eta n_{e}[\eta] \sigma_{\mathrm{T}} a(\eta)
$$

II. The Silk Damping Tail

From Wayne Hu's website

$$
l_{\text {damp }} \sim 1000
$$

- Inhomogeneities are damped for $\lambda<\lambda_{D}$
$k_{D}^{-2}(\eta) \simeq \int_{0}^{\eta} \frac{d \eta^{\prime}}{6(1+R) n_{e}\left[\eta^{\prime}\right] \sigma_{\mathrm{T}} a\left[\eta^{\prime}\right]}\left[\frac{R^{2}}{1+R}+\frac{8}{9}\right]$
$R=\frac{3 \rho_{b}^{0}}{4 \rho^{\gamma}}$
$\left|\Theta_{l}\left(\eta_{0}\right)\right| \simeq \int_{0}^{\eta_{0}} d \eta \dot{\tau} e^{-\tau(\eta)} e^{i k \int d \eta c_{s}} e^{-k^{2} / k_{D}^{2}(\eta)} \tilde{\delta}(k) j_{l}\left(k\left(\eta-\eta_{0}\right)\right) d k$

II. The Silk Damping Tail

- From Wayne Hu's website

$$
l_{\text {damp }} \sim 1000
$$

$\lambda_{\mathrm{D}} \approx \mathrm{N}^{1 / 2} \lambda_{\mathrm{C}}$

- Inhomogeneities are damped for $\lambda<\lambda_{D}$
$k_{D}^{-2}(\eta) \simeq \int_{0}^{\eta} \frac{d \eta^{\prime}}{6(1+R) n_{e}\left[\eta^{\prime}\right] \sigma_{\mathrm{T}} a\left[\eta^{\prime}\right]}\left[\frac{R^{2}}{1+R}+\frac{8}{9}\right]$
$R=\frac{3 \rho_{b}^{0}}{4 \rho^{\gamma}}$
$\left|\Theta_{l}\left(\eta_{0}\right)\right| \simeq \int_{0}^{\eta_{0}} d \eta \dot{\tau} e^{-\tau(\eta)} e^{i k \int d \eta c_{s}} e^{-k^{2} / k_{D}^{2}(\eta)} \tilde{\delta}(k) j_{l}\left(k\left(\eta-\eta_{0}\right)\right) d k$

WHO CARES?

III. FINITE THICKNESS OF THE SLSS

E.

- Additional damping of form

$$
\left|\Theta_{l}\left(\eta_{0}, k\right)\right| \rightarrow\left|\Theta_{l}\left(\eta_{0}, k\right)\right| e^{-\sigma^{2} \eta_{\mathrm{rec}}^{2} k^{2}}
$$

WHO CARES? IV. CMB POLARIZATION

- Need to scatter quadrapole to polarize CMB
$\Theta_{l}^{P}(k)=\int d \eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T, 2}(k, \eta) \frac{l^{2}}{(k \eta)^{2}} j_{l}(k \eta)$
- Need time to develop a quadrapole
$\Theta_{l}(k \eta) \sim \frac{k \eta}{2 \tau} \Theta_{l}(k \eta) \ll \Theta_{l}(\eta)$ if $l \geq 2$, in tight coupling regime

Who CARES?
 IV. CMB POLARIZATION

- Need to scatter quadrapole to polarize CMB

$$
\Theta_{l}^{P}(k)=\int d \eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T, 2}(k, \eta) \frac{l^{2}}{(k \eta)^{2}} j_{l}(k \eta)
$$

- Need time to develop a quadrapole
$\Theta_{l}(k \eta) \sim \frac{k \eta}{2 \tau} \Theta_{l}(k \eta) \ll \Theta_{l}(\eta)$ if $l \geq 2$, in tight coupling regime

Who CARES?
 IV. CMB POLARIZATION

- Need to scatter quadrapole to polarize CMB

$$
\Theta_{l}^{P}(k)=\int d \eta \dot{\tau} e^{-\tau(\eta)} \Theta_{T, 2}(k, \eta) \frac{l^{2}}{(k \eta)^{2}} j_{l}(k \eta)
$$

- Need time to develop a quadrapole
$\Theta_{l}(k \eta) \sim \frac{k \eta}{2 \tau} \Theta_{l}(k \eta) \ll \Theta_{l}(\eta)$ if $l \geq 2$, in tight coupling regime

WHO CARES?
 V. PARAMETER DEGENERACIES

18/29

- Planck will be CV limited (T and E) to $l \sim 2500$
- 0.1% accuracy required in $x_{e}(z)$

Planck uncertainty
forecasts using MCMC

THE MULTI-LEVEL ATOM (MLA)

Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & =\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H} x_{e} x_{p}\left[1+f\left(E_{e}-E_{n}\right)\right] \alpha_{n l}\left(E_{\mathrm{e}}\right) \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{n l} f\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l l^{\prime}}\left(1+f_{n n^{\prime}}\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime} l^{\prime}}}{g_{n l}} f_{n n^{\prime}} x_{n l}\right) P_{n n^{\prime}}^{l l^{\prime}}
$$

THE MULTI-LEVEL ATOM (MLA)

Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & =\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H} \stackrel{x_{e} x_{p}\left[1+f\left(E_{e}-E_{n}\right)\right]}{\alpha_{n l}\left(E_{\mathrm{e}}\right)} \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{n l} f\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l l^{\prime}}\left(1+f_{n n^{\prime}}\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime} l^{\prime}}}{g_{n l}} f_{n n^{\prime}} x_{n l}\right) P_{n n^{\prime}}
$$

THE MULTI-LEVEL ATOM (MLA)

Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & =\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H} x_{e} x_{p}\left[1+f\left(E_{e}-E_{n}\right)\right] \alpha_{n l}\left(E_{\mathrm{e}}\right) \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{n l} f\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l l^{\prime}}\left(1+f_{n n^{\prime}}\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime} l^{\prime}}}{g_{n l}} f_{n n^{\prime}} x_{n l}\right) P_{n n^{\prime}}^{l l^{\prime}}
$$

- Phase-space density blueward of line
- Escape probability of γ in line

THE MULTI-LEVEL ATOM (MLA)

Stimulated emission/absorption

- Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & =\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H} x_{e} x_{0}\left[l+f\left(E_{e}-E_{n}\right)\right] \alpha_{n l}\left(E_{\mathrm{e}}\right) \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{n l} f\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\left.\dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l l^{\prime}}\left(1+f_{n n}\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime}} l^{\prime}}{g_{n l}} f_{n n}\right) x_{n l}\right) P_{n n^{\prime}}^{l l^{\prime}}
$$

THE MULTI-LEVEL ATOM (MLA)

Spontaneous Emission

Bound-free rate equation

$$
\begin{aligned}
\dot{x}_{n l}^{b f} & =\int d E_{\mathrm{e}} P_{M}\left(T_{m}, E_{\mathrm{e}}\right) n_{H} x_{e} x_{p}\left[1+f\left(E_{e}-E_{n}\right)\right] \alpha_{n l}\left(E_{\mathrm{e}}\right) \\
& -\int d E_{\mathrm{e}} g\left(E_{\mathrm{E}}-E_{n}\right) x_{n l} f\left(E_{\mathrm{e}}-E_{n l}\right) \alpha_{n l}\left(E_{\mathrm{E}}\right) / g_{n l}
\end{aligned}
$$

- Bound-bound rate equation

$$
\left.\dot{x}_{n l}^{b b}=\sum_{n^{\prime}, l^{\prime}=l \pm 1}\left(A_{n n^{\prime}}^{l l^{\prime}}(1)+f_{n n^{\prime}}\right) x_{n^{\prime}, l^{\prime}}-\frac{g_{n^{\prime} l^{\prime}}}{g_{n l}} f_{n n^{\prime}} x_{n l}\right) P_{n n^{\prime}}^{l l^{\prime}}
$$

RATE COEFFICIENTS

- Bound-bound rates given by Fermi's golden rule and matrix element

$$
\begin{array}{r}
\rho\left(n^{\prime} l^{\prime}, n l\right)=\int_{0}^{\infty} u_{n^{\prime} l^{\prime}}(r) u_{n l}(r) r^{3} d r=\mathcal{C} \times\left[F_{2,1}\left(-n+l+1,-n^{\prime}+l, 2 l, \frac{-4 n n^{\prime}}{\left(n-n^{\prime}\right)^{2}}\right)\right. \\
-\left(\frac{n-n^{\prime}}{n+n^{\prime}}\right)^{2} F_{2,1}\left(-n+l-1,-n^{\prime}+l, 2 l, \frac{-4 n n^{\prime}}{\left(n-n^{\prime}\right)^{2}}\right)^{2}
\end{array}
$$

- Power-series destabilizes at high-n, recursion relation used
- Bound-free rates at temperature T given by phase space integral of matrix element $g_{n l}=\int_{0}^{\infty} u_{n(}(r) f_{b l}(r) r^{3} d r$
- Rates are tabulated at all n and 1 of interest, at a variety of energies, and integrated at each time step

RATE COEFFICIENTS

- Rates are tabulated at all n and 1 of interest, at a variety of energies, and integrated at each time step $\rho\left(n^{\prime} l^{\prime}, n l\right)=a_{0} n^{2} \int_{-\pi}^{\pi} d \tau e^{i \Omega \tau}(1+\cos \eta)$

$$
\begin{array}{r}
\Omega=\omega_{n}-\omega_{n^{\prime}} \\
r=r_{\max }(1+\cos \eta) / 2 \\
\tau=\eta+\sin \eta
\end{array}
$$

Fourier transform of classical orbit! Application of correspondence principle!

- Similar WKB approximation can be used to check stability of BF matrix elements

RadIATION FIELD: BLACK BODY+

- Escape probability treated in Sobolev approx.

$$
\begin{aligned}
& P_{n, n^{\prime}}^{l, l^{\prime}}=\frac{1-e^{-\tau_{s}}}{\tau_{s}} \quad \tau_{s}=\frac{c^{3} n_{\mathrm{H}}}{8 \pi H \nu_{n n^{\prime}}^{3}} A_{n n^{\prime}}^{l^{\prime}}\left[\frac{g_{n^{\prime}}^{l^{\prime}}}{g_{n}^{l}} x_{n}^{l}-x_{n^{\prime}}^{l^{\prime}}\right] \\
& \mathcal{R}\left(\nu, \nu^{\prime}\right)=\phi(\nu) \phi\left(\nu^{\prime}\right) \\
& \frac{v_{\mathrm{th}}}{H(z)}<\lambda
\end{aligned}
$$

Excess line photons injected into radiation field

$$
\left(\frac{8 \pi \nu_{n^{\prime}}^{3}}{c^{\prime} n_{H}^{\prime}}\right)\left(f_{n n^{\prime}}^{+}-f_{n n^{\prime}}^{-}\right)=A_{n n^{\prime}}^{l^{\prime}} P l_{n n^{\prime}}^{l l^{\prime}}\left[x_{n}^{l}\left(1+f_{n n^{\prime}}^{+}\right)-\frac{g_{n}^{l}}{g_{n^{\prime}}^{\prime \prime}} x_{n n^{\prime}}^{l^{\prime}} f_{n n^{\prime}}^{+}\right]
$$

- Photons are conserved outside of line regions

$$
f_{n 1}^{+10}=f_{n+1,1}^{+10}\left[\frac{1-(n+1)^{-2}}{1-n^{-2}}(1+z)-1\right]
$$

RadIATION FIELD: Black BODY+

- Escape probability treated in Sobolev approx.

$$
\begin{aligned}
& P_{n, n^{\prime}}^{l, l^{\prime}}=\frac{1-e^{-\tau_{s}}}{\tau_{s}} \quad \tau_{s}=\frac{c^{3} n_{\mathrm{H}}}{8 \pi H \nu_{n n^{\prime}}^{3}} A_{n n^{\prime}}^{l l^{\prime}}\left[\frac{g_{n^{\prime}}^{l^{\prime}}}{g_{n}^{\prime}} x_{n}^{l}-x_{n^{\prime}}^{l^{\prime}}\right] \\
& \mathcal{R}\left(\nu, \nu^{\prime}\right)=\phi(\nu) \phi\left(\nu^{\prime}\right)
\end{aligned}
$$

- Forbes and Hirata are solving FP eqn. to obtain evolution of $\mathcal{R}\left(\nu, \nu^{\prime}\right)$ more generally, including atomic recoil/diffusion and full time-dependence of problem

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\vec{s}
$$

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \hat{x}}{d t}=\mathbf{R} \vec{x}+\vec{s}
$$

$$
\vec{x}=\left(\begin{array}{c}
\vec{x}_{0} \\
\vec{x}_{1} \\
\cdots \\
\vec{x}_{n_{\max }-1}
\end{array}\right)
$$

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathrm{R} \vec{x}+\vec{s}
$$

For state 1, includes BB transitions out of 1 to all other 1", photo-ionization, 2γ transitions to ground state

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathrm{R} \vec{x}+\vec{s}
$$

For state 1, includes BB transitions into 1 from all other l'

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\Theta
$$

- Includes recombination to 1 ,

1 and 2γ transitions from ground state

STEADY-STATE APPROXIMATION FOR EXCITED STATES

- Evolution equations may be re-written in matrix form

$$
\frac{d \vec{x}}{d t}=\mathbf{R} \vec{x}+\vec{s}
$$

For $\mathrm{n}>1, t_{\text {rec }}^{-1} \sim 10^{-12} s^{-1}<\mathbf{R}, \vec{s} \rightarrow \vec{x} \simeq \mathbf{R}^{-1} \vec{s}$

$$
\mathrm{R} \lesssim 1 \mathrm{~s}^{-1}(\text { e.g. Lyman }-\alpha)
$$

SPARSITY TO THE RESCUE

- Matrix is $\sim n_{\max }^{2} \times n_{\max }^{2}$
- Brute force would require $n_{\max }^{6} \sim 1000 \mathrm{~s}$ for $n_{\max }=200$ for a single time step
- Sparsity to the rescue $\Delta l= \pm 1$
$\mathbf{M}_{l, l-1} \vec{x}_{l-1}+\mathbf{M}_{l, l \vec{x}_{l}}+\mathbf{M}_{l, l+1} \vec{x}_{l+1}=\vec{s}_{l}$

$$
\chi_{l}=\left\{\begin{array}{llc}
\mathbf{M}_{00}^{-1} & \text { if } l=0 & \sigma_{l, l-1}=\mathbf{M}_{l, l-1} \chi_{l-1} \\
\left(\mathbf{M}_{l+1, l+1}-\mathbf{M}_{l+1, l} \chi_{l} \mathbf{M}_{l, l+1}\right)^{-1} & \text { if } l>0 & \sigma_{l, i}=\sigma_{l, i+1} \mathbf{M}_{i+1, i} \chi_{i}
\end{array}\right.
$$

RECOMBINATION HISTORIES

- $x_{e}(z)$ falls with increasing $n_{\max }=10 \rightarrow 100$, as expected:
- Rec Rate>downward BB Rate> Ionization, upward BB rate
- Even for $n_{\max }=100$, code computes in only 2 hours

DEVIATIONS FROM BOLTZMANN EQ: HIGH-N

- $\alpha n \gtrsim A_{\mathrm{bb}, \text { down }}$.

DEVIATIONS FROM BOLTZMANN EQ: RESOLVING 1

TEMPERATURE $C_{l} s$

POLARIZATION $C_{l} s$

WRAPPING UP

To do:

- Sobolev iteration and higher lines
- Collisions!
- Effective source term for higher levels
- Full incorporation into CMBFAST/CAMB and analysis of errors/degeneracies with cosmo. parameters

