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CLONE WARS

* Planck (launched May 2009) will make cosmic-variance limited CMB
anisotropy measurements up to 1~2500 (T), and 1~1500 (E)

* Wong 2007 and Lewis 2006 show that x.(z) needs to be predicted to 0.1%
accuracy for Planck data analysis
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RECOMBINATION, INFLATION, AND REIONIZATION

P(k) = A (kno)™

* Planck uncertainty forecasts using MCMC (Wong/Moss/Scott 2007)
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* Leverage on new physics comes from high 1. Here the details of recombination matter!

* Inferences about inflation will be wrong if recombination is improperly modeled
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Need to do eV physics right to infer anything about 10° GeV physics! 3
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EQUILIBRIUM ASSUMPTIONS

*Radiative/collisional eq. between different 1

* Radiative eq. between different n-states

Non-eq rate equations
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BREAKING EQUILIBRIUM

* Chluba et al. (2005,6) follow 1, n separately, get to nmax = 100

* 0.1 %-level corrections to CMB anisotropies at 15 = 100

* Equihibriam between [ states: Al = +1 bottleneck

* Beyond this, testing convergence with 7,5 18 hard!

teompute ~ O (years) for ny ., = 300

How to proceed if we want 0.01% accuracy in x,(z) ?
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RECSPARSE AND THE MULTI-LEVEL ATOM
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* We implement a multi-level atom computation in a new code,
* Boltzmann eq. solved for T, (7’,)

*  Spontaneous/stimulated emission/absorption included
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RECSPARSE AND THE MULTI-LEVEL ATOM
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* We implement a multi-level atom computation in a new code,

* Boltzmann eq. solved for T, (7’,)

*  Spontaneous/stimulated emission/absorption included
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RECSPARSE AND THE MULTI-LEVEL ATOM

X Free electron fraction evolved according to
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RECSPARSE AND THE MULTI-LEVEL ATOM

X Free electron fraction evolved according to
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Lyman series current to ground state
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RECSPARSE AND THE MULTI-LEVEL ATOM

X Free electron fraction evolved according to

— —A23—>13 (3323 I xlSG_EQ o—1e/Ty ) Z Al OPZO {g T " l)}
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Einstein coeff.




RECSPARSE AND THE MULTI-LEVEL ATOM

X Free electron fraction evolved according to

Le — —dAis
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OTHER CORRECTIONS TO RECOMBINATION

* Deviations from steady-state approx (Chluba/Sunyaev 2008)

* Coherent scattering (Forbes and Hirata 2009, Switzer/Hirata
2007)

*  Atomic recoil (Forbes and Hirata 2009, Dubrovich and
Grachev 2008)

* Feedback from hydrogen/helium (Chluba/Sunyaev 2007)

* Higher-n two-photon processes (Chluba/Sunyaev 2007, Hirata
2008) 1n hydrogen and Helium (Switzer/Hirata 2007)
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

d*
d—f —Ri4+§




STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written 1n matrix form

dx
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

For state 1, includes BB transitions out of 1 to all other 17,
photo-ionization, 2+ transitions to ground state
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

Az
dt

For state 1, includes BB transitions into 1 from all other I’

Tuesday, January 5,2010



STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

dﬁ
d—f — R7 +§

Includes recombination to 1,
1 and 27 transitions from ground state 8




STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

d*
™ _Ri+F

dt f\\

Forn>1,R,5>1s! e.g. Lyman-«
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written in matrix form

i
/E:RQ\

tree~1072 st Forn>1,R,5>1s"! e.g. Lyman-a
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STEADY-STATE FOR EXCITED LEVELS

* Evolution equations may be re-written 1n matrix form




RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

* Matrix 1s ~ n? xn?

/] [
l=le
000

* Dipole selection rules: Al = +1 (

)/ Zo
21 o
coe I l
S\ Zn

* computation time ~ nmax>>* Huge improvement!

M j—1Z1—1 + M%7 + My 41 141= S

* Case of 1y ax = 100 runs 1n less than a day, ny,.x = 200 takes ~ 4 days.

* Purely radiative model, collisions would push closer to eq., but theoretical
rates are in bad shape!
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FORBIDDEN TRANSITIONS AND RECOMBINATION

* Higher-n 2+ transitions in H important at 7-o for Planck (TT/EE) data
analysis (Hirata 2008, Kholupenko 2006)

* Some forbidden transitions are important in Helium recombination
(Dubrovich 2005, Lewis 2006).

* Unfinished business:

Maybe
quadrupole transitions, since they are optically thick?

10
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QUADRUPOLE TRANSITIONS AND RECOMBINATION

* Lyman lines are optically thick, so nd — 1s immediately

followed by 1s — np, so this can be treated as an
effective d — p process with rate A,,g—1sTnd.

* Same sparsity pattern of rate matrix, similar to 1-changing
collisions

* Detailed balance yields net rate

D
quad _
Rnd—>np — And—>18 (mnd — §xnp
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DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES
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DEVIATIONS FROM BOLTZMANN EQUILIBRIUM:

DIFFERENT 7n-SHELLS
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DEVIATIONS FROM BOLTZMANN EQUILIBRIUM:
DIFFERENT n-SHELLS
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Masing could make spectral
distortions detectable! 13
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RESULTS: RECOMBINATION HISTORIES INCLUDING HIGH-n
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* T (2) falls with increasing n,,.« = 10 — 250, as expected.
* Rec Rate>downward BB Rate> Ionization, upward BB rate

* For e = 100, code computes 1n only 2 hours
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RESULTS: RECOMBINATION WITH HYDROGEN
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RESULTS: TT C;s WITH HIGH-N STATES

Super-horizon scales don’t care about recombination
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RESULTS: EE (s WITH HIGH-N STATES
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CONVERGENCE
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* Relative error well described by power law at high n,,, ..
—1.9

Axe/xe X N

* Can extrapolate to absolute error
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THE UPSHOT FOR COSMOLOGY

* Can explore effect on overall Planck likelihood analysis

7*= Y FwACFAC)
1. X,y

/Z = 1.8 1f npmax = 64,
Z = 0.90 if npmayx = 128,
Z = 0.14 if nmax = 250.
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WRAPPING UP

* RecSparse: a new tool for MLA recombination calculations

* Highly excited levels (n~64 and higher) are relevant for CMB
data analysis

* E2 transitions 1n H are not relevant for CMB data analysis

* Future work:

* Include line-overlap
*  Collisions/high-n cutoff
*  Fisher/Monte-Carlo analyses

*  Compute rec. line. spectra (masers?)

20

Tuesday, January 5,2010



