

Cosmological Hydrogen Recombination: The effect of extremely high-n states

arXiv:0911.1359, submitted to Phys. Rev. D. Daniel Grin

in collaboration with Christopher M. Hirata Session 362, AAS DC Conference 1/6/2010

CLONE WARS

- * Planck (launched May 2009) will make cosmic-variance limited CMB anisotropy measurements up to 1~2500 (T), and 1~1500 (E)
- * Wong 2007 and Lewis 2006 show that $x_e(z)$ needs to be predicted to 0.1% accuracy for Planck data analysis

RECOMBINATION, INFLATION, AND REIONIZATION

$$P(k) = A_s \left(k\eta_0\right)^{n_s}$$

Planck uncertainty forecasts using MCMC (Wong/Moss/Scott 2007)

- Leverage on new physics comes from high l. Here the details of recombination matter!
- Inferences about inflation will be wrong if recombination is improperly modeled

$$n_s = 1 - 4\epsilon + 2\eta$$

$$\epsilon = rac{m_{
m pl}^2}{16\pi} \left[rac{V'(\phi)}{V(\phi)}
ight]^2$$

$$\epsilon = \frac{m_{\rm pl}^2}{16\pi} \left[\frac{V'(\phi)}{V(\phi)} \right]^2 \qquad A_s^2 = \left. \frac{32}{75} \frac{V}{m_{\rm pl}^4 \epsilon} \right|_{k_{\rm pivot} = aH}$$

CAVEAT EMPTOR: $3 \lesssim ? \lesssim 16$

$$3 \lesssim ? \lesssim 16$$

Need to do eV physics right to infer anything about 10? GeV physics! 3

EQUILIBRIUM ASSUMPTIONS

*Radiative/collisional eq. between different l

$$\mathcal{N}_{nl} = \mathcal{N}_n \frac{(2l+1)}{n^2}$$

* Radiative eq. between different n-states

$$\mathcal{N}_n = \sum_{l} \mathcal{N}_{nl} = \mathcal{N}_2 e^{-(E_n - E_2)/T}$$

Non-eq rate equations

EQUILIBRIUM ASSUMPTIONS

*Radiative/collisional eq. between different l

$$\mathcal{N}_{nl} = \mathcal{N}_n \frac{(2l+1)}{n^2}$$

Seager/Scott/Sasselov 2000/RECFAST!

* Radiative eq. between different n-states

$$\mathcal{N}_n = \sum_{l} \mathcal{N}_{nl} = \mathcal{N}_2 e^{-(E_n - E_2)/T}$$

Non-eq rate equations

BREAKING EQUILIBRIUM

- * Chluba et al. (2005,6) follow l, n separately, get to $n_{\rm max}=100$
- * 0.1 %-level corrections to CMB anisotropies at $n_{\rm max}=100$
- * Equilibrium between l states: $\Delta l = \pm 1$ bottleneck
- * Beyond this, testing convergence with n_{max} is hard!

$$t_{\text{compute}} \sim \mathcal{O} \text{ (years) for } n_{\text{max}} = 300$$

How to proceed if we want 0.01% accuracy in $x_e(z)$?

- * We implement a multi-level atom computation in a new code, RecSparse!
- * Boltzmann eq. solved for $T_m\left(T_\gamma\right)$
- * Spontaneous/stimulated emission/absorption included

- * We implement a multi-level atom computation in a new code, RecSparse!
- * Boltzmann eq. solved for $T_m(T_\gamma)$
- * Spontaneous/stimulated emission/absorption included

- * We implement a multi-level atom computation in a new code, RecSparse!
- * Boltzmann eq. solved for $T_m(T_\gamma)$
- * Spontaneous/stimulated emission/absorption included

6

*Free electron fraction evolved according to

$$\dot{x}_e = -\dot{x}_{1s}$$

$$= -\Lambda_{2s \to 1s} \left(x_{2s} - x_{1s} e^{-E_{2s \to 1s}/T_{\gamma}} \right) + \sum_{n,l>1s} A_{n1}^{l\ 0} P_{n1}^{l0} \left\{ g(T,n,l) \right\}$$
 2s-1s decay rate

*Free electron fraction evolved according to

$$\dot{x}_e = -\dot{x}_{1s}
= -\Lambda_{2s \to 1s} \left(x_{2s} - x_{1s} e^{-E_{2s \to 1s}/T_{\gamma}} \right) + \sum_{n,l > 1s} A_{n1}^{l \ 0} P_{n1}^{l0} \left\{ g(T, n, l) \right\}$$

Lyman series current to ground state

*Free electron fraction evolved according to

$$\dot{x}_{e} = -\dot{x}_{1s}$$

$$= -\Lambda_{2s \to 1s} \left(x_{2s} - x_{1s} e^{-E_{2s \to 1s}/T_{\gamma}} \right) + \sum_{n,l > 1s} A_{n1}^{l \ 0} P_{n1}^{l0} \left\{ g(T,n,l) \right\}$$
Einstein coeff.

*Free electron fraction evolved according to

$$\dot{x}_e = -\dot{x}_{1s}$$

$$= -\Lambda_{2s o 1s} \left(x_{2s} - x_{1s} e^{-E_{2s o 1s}/T_\gamma} \right) + \sum_{n,l>1s} A_{n1}^{l\ 0} P_{n1}^{l0} \left\{ g(T,n,l) \right\}$$
Escape probability

OTHER CORRECTIONS TO RECOMBINATION

- * Deviations from steady-state approx (Chluba/Sunyaev 2008)
- * Coherent scattering (Forbes and Hirata 2009, Switzer/Hirata 2007)
- * Atomic recoil (Forbes and Hirata 2009, Dubrovich and Grachev 2008)
- * Feedback from hydrogen/helium (Chluba/Sunyaev 2007)
- * Higher-n two-photon processes (Chluba/Sunyaev 2007, Hirata 2008) in hydrogen and Helium (Switzer/Hirata 2007)

* Evolution equations may be re-written in matrix form

$$\frac{d\vec{x}}{dt} = \mathbf{R}\vec{x} + \vec{s}$$

* Evolution equations may be re-written in matrix form

* Evolution equations may be re-written in matrix form

$$\frac{d\vec{x}}{dt} = \mathbf{R}\vec{x} + \vec{s}$$

* Evolution equations may be re-written in matrix form

For state 1, includes BB transitions out of 1 to all other 1", photo-ionization, 2γ transitions to ground state

* Evolution equations may be re-written in matrix form

For state 1, includes BB transitions into 1 from all other 1'

* Evolution equations may be re-written in matrix form

$$\frac{d\vec{x}}{dt} = \mathbf{R}\vec{x} + \vec{s}$$

Includes recombination to 1, 1 and 2γ transitions from ground state

* Evolution equations may be re-written in matrix form

$$\frac{d\vec{x}}{dt} = \mathbf{R}\vec{x} + \vec{s}$$
 For n>1, \mathbf{R} , $\vec{s} \ge 1$ s⁻¹ e.g. Lyman- α

* Evolution equations may be re-written in matrix form

$$\frac{d\vec{x}}{dt} = \mathbf{R}\vec{x} + \vec{s}$$

$$t_{\rm rec}^{-1} \sim 10^{-12} \, {\rm s}^{-1}$$
 For n>1, $\mathbf{R}, \vec{s} \geq 1 \, {\rm s}^{-1}$ e.g. Lyman- α

* Evolution equations may be re-written in matrix form

RAPID MATRIX INVERSION: SPARSITY TO THE RESCUE

- * Matrix is $\sim n_{max}^2 \times n_{max}^2$
- * Dipole selection rules: $\Delta l = \pm 1$

$$M_{l,l-1}\vec{x}_{l-1} + M_{l,l}\vec{x}_l + M_{l,l+1}\vec{x}_{l+1} = \vec{s}_l$$

$$\begin{pmatrix} \mathbf{x}_{0} & \mathbf{x}_{0} & \mathbf{x}_{0} \\ \mathbf{x}_{0} & \mathbf{x}_{0} & \mathbf{x}_{1} \\ \vdots & \vdots & \mathbf{x}_{n_{\max}-1} \end{pmatrix} = \vec{s}_{l}$$

- * RecSparse computation time $\sim n_{max}^{2.5}$: Huge improvement!
- * Case of $n_{\text{max}} = 100$ runs in less than a day, $n_{\text{max}} = 200$ takes ~ 4 days.
- * Purely radiative model, collisions would push closer to eq., but theoretical rates are in bad shape!

9

FORBIDDEN TRANSITIONS AND RECOMBINATION

- * Higher-n 2γ transitions in H important at 7- σ for Planck (TT/EE) data analysis (Hirata 2008, Kholupenko 2006)
- * Some forbidden transitions are important in Helium recombination (Dubrovich 2005, Lewis 2006).
- * Unfinished business: Are other forbidden transitions in hydrogen important, particularly for Planck data analysis? Maybe quadrupole transitions, since they are optically thick?

QUADRUPOLE TRANSITIONS AND RECOMBINATION

* Lyman lines are optically thick, so $nd \to 1s$ immediately followed by $1s \to np$, so this can be treated as an effective $d \to p$ process with rate $A_{nd \to 1s} x_{nd}$.

* Same sparsity pattern of rate matrix, similar to 1-changing collisions

* Detailed balance yields net rate

$$R_{nd \to np}^{\text{quad}} = A_{nd \to 1s} \left(x_{nd} - \frac{5}{3} x_{np} \right)$$

DEVIATIONS FROM BOLTZMANN EQ: L-SUBSTATES

DEVIATIONS FROM BOLTZMANN EQUILIBRIUM: DIFFERENT *n*-SHELLS

$$\alpha_n n_e > \sum_{n'l}^{n' < n} A_{nn'}^{ll \pm 1}$$

- * No inversion relative to n=2 (just over-population)
- * Population inversion seen between some excited states: Does radiation stay coherent? Does recombination mase?

DEVIATIONS FROM BOLTZMANN EQUILIBRIUM: DIFFERENT *n*-SHELLS

Masing could make spectral distortions detectable!

RESULTS: RECOMBINATION HISTORIES INCLUDING HIGH-n

- * $x_e(z)$ falls with increasing $n_{\text{max}} = 10 \rightarrow 250$, as expected.
- * Rec Rate>downward BB Rate> Ionization, upward BB rate
- * For $n_{max} = 100$, code computes in only 2 hours

14

RESULTS: RECOMBINATION WITH HYDROGEN

$$\Delta x_e \equiv x_e|_{\text{no } E2 \text{ transitions}} - x_e|_{\text{with } E2 \text{ transitions}}$$

Negligible for Planck!

RESULTS: TT C_ls WITH HIGH-N STATES

Super-horizon scales don't care about recombination

RESULTS: EE C_ls WITH HIGH-N STATES

CONVERGENCE

* Relative error well described by power law at high $n_{\rm max}$

$$\Delta x_e/x_e \propto n_{\rm max}^{-1.9}$$

* Can extrapolate to absolute error

THE UPSHOT FOR COSMOLOGY

* Can explore effect on overall Planck likelihood analysis

$$Z^{2} = \sum_{ll',X,Y} F_{ll'} \Delta C_{l}^{X} \Delta C_{l}^{Y}$$

$$Z = 1.8 \text{ if } n_{\text{max}} = 64,$$
 $Z = 0.50 \text{ if } n_{\text{max}} = 128,$
 $Z = 0.14 \text{ if } n_{\text{max}} = 250.$

WRAPPING UP

- * RecSparse: a new tool for MLA recombination calculations
 - * Highly excited levels (n~64 and higher) are relevant for CMB data analysis
 - * E2 transitions in H are not relevant for CMB data analysis
- * Future work:
 - * Include line-overlap
 - * Collisions/high-n cutoff
 - * Fisher/Monte-Carlo analyses
 - * Compute rec. line. spectra (masers?)