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Some generalities
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Some generalities

Review papers on spectral distortions: Les Houches lecture notes (Chluba 2013) 
See work by Sunyaev, Chluba, Khatri, Ali-Haimoud, Pajer, Zaldarriaga

First papers by Sunyaev and Zel’dovich
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COBE BLACKBODY

3-4 orders of magnitude improvement now possible!!!



        AND Y-TYPE DISTORTIONµ
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Fig. 7. y-type and µ-type distortions. Difference in intensity from the blackbody spectrum is
shown. The distortions shown correspond approximately to the COBE/FIRAS limits. Both types
of distortions shown have the same energy density and number density of photons. Figure from
Ref. 35.

4.1. y-type distortions from reionization and WHIM

Present observations indicate that the Universe was reionized between redshifts of
6 ! z ! 20,28 when the first stars and galaxies flooded the Universe with ultra-
violet radiation. The ionizing radiation also heated the gas to temperatures well
above the CMB temperature, with the electron temperature in the ionizing regions
Te ∼ 104 K. Late time structure formation shock heated the gas to even higher
temperatures,38 105 ! Te ! 107 K, creating the warm-hot intergalactic medium
(WHIM).39 The optical depth, τ , to the last scattering surface is well constrained
by CMB observations28 to be τ ≈ 0.087± 0.014, assuming ΛCDM cosmology. Thus
if Te ≈ 104 K, we expect y ∼ 10−7. However if a significant fraction of baryons end
up in the WHIM at z ! 3, as expected from recent simulations,39, 40 we expect the
y-distortions from the WHIM to dominate over those from reionization.41 In any
case, these distortions would be easily detected by PIXIE3 and the next genera-
tion CMB experiments like CoRE,4 ACTPol42 and SPTPol43 should also be able to
detect the fluctuations in the y-type distortions from the the WHIM. The rate of
y-type distortion injection with redshift is shown in Fig. 8 for a simple model where
reionization happens between 8 < z < 15 and the density averaged temperature of
free electrons is assumed to be Te = 104 K for z > 3 and Te = 106/(1 + z)3.3 K at

From Khatri 2012



✴ Thomson (y) epoch

✴ Chemical equilibrium epoch

EQUILIBRATING PROCESSES

6

✴ Comptonization (μ) epoch

Seminal work by Sunyaev/Zeldovich (1970) 
recent work by Chluba, Khatri, Sunyaev…. 
see also Wayne Hu’s PhD thesis for a review
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ENERGY INJECTION
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✴ Dark matter annihilation (photons produced directly or through 
cascades)	



✴ Dark matter decay	


✴ Damping of acoustic modes	



✴ Features in power spectrum	


✴ Reionization (z~6) y~10-7 overwhelms primordial y	


✴ Gauge boson production from cosmic strings	


✴ Primordial magnetic field damping Marsh/Silk/Tashiro 2013

Chluba/Erickcek/Ben-Dayan 2012

Tashiro and Vachaspati 2012

Chluba 2009



SDS AND SMALL-SCALE POWER SPECTRUM
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!

✴ Damping of acoustic modes	


✴ Steps in primordial power spectrum	


✴ Bumps in primordial power spectrum	


✴ Features from inflationary particle production	


✴ Running mass inflaton	



Chluba/Erickcek/Ben-Dayan 2012



EXPERIMENTAL HORIZON
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Figure 12. Distortions to the CMB blackbody spectrum compared to the PIXIE instrument noise
in each synthesized frequency channel. The curves show 5� detections of Compton (y) and chemical
potential (µ) distortions. PIXIE measurements of the y distortion determine the temperature of the
intergalactic medium at reionization, while the µ distortion probes early energy release from dark
matter annihilation or Silk damping of primordial density perturbations.

to a chemical potential µ < 10�8 (Fig. 12). Constraints on chemical potential distortions
in the CMB spectrum probe the amplitude of matter fluctuations down to physical scales as
small as 1 kpc (1 solar mass).

4.2 Dark Matter

The chemical potential of the CMB spectrum provides a limit to any early energy release.
Neutralinos are an attractive candidate for dark matter; the annihilation of ��̄ pairs in the
early universe leads to an observable distortion in the CMB. The chemical potential can be
estimated as

µ ⇠ 3⇥ 10�4 f

✓
�v

6⇥ 10�26 cm3 s�1

◆ ⇣ m
�

1 MeV

⌘�1 �
⌦
�

h2
�
2

. (4.2)

where f is the fraction of the total mass energy released to charged particles, h�vi is
the velocity-averaged annihilation cross section, ⌦

�

is the dark matter density, and h =
H

0

/100 km s�1 Mpc�1 is the Hubble constant [40, 41]. The dark matter annihilation rate
varies as the square of the number density. For a fixed ⌦

�

the number density is inversely
proportional to the particle mass. The chemical potential distortion is thus primarily sensi-
tive to lower-mass particles. PIXIE will probe neutralino mass range m

�

<
⇠ 80 keV to provide

a definitive test for light dark matter models [42].
Neutralino models are only one class of potential dark matter candidates. Many super-

symmetric models predict that the lightest stable supersymmetric particle is the gravitino,

– 20 –

PIXIE (Explorer proposal, $200M)

Figure 2. PIXIE optical signal path. As the dihedral mirrors move, the detectors measure a fringe
pattern proportional to the Fourier transform of the di↵erence spectrum between orthogonal polariza-
tion states from the two input beams (Stokes Q in instrument coordinates). A full-aperture blackbody
calibrator can move to block either input beam, or be stowed to allow both beams to view the same
patch of sky.

Figure 2 shows the instrument concept. Two o↵-axis primary mirrors 550 mm in diam-
eter produce twin beams co-aligned with the spacecraft spin axis. A folding flat and 50 mm
secondary mirror route the beams to the FTS. A set of six transfer mirror pairs, each imaging
the previous mirror to the following one, shuttles the radiation through a series of polarizing
wire grids. Polarizer A transmits vertical polarization and reflects horizontal polarization,
separating each beam into orthogonal polarization states. A second polarizer (B) with wires
oriented 45� relative to grid A mixes the polarization states. A Mirror Transport Mech-
anism (MTM) moves back-to-back dihedral mirrors to inject an optical phase delay. The
phase-delayed beams re-combine (interfere) at Polarizer C. Polarizer D (oriented the same
as A) splits the beams again and routes them to two multi-moded concentrator feed horns.
Each concentrator is square to preserve linear polarization and contains a pair of identical
bolometers, each sensitive to a single linear polarization but mounted at 90� to each other
to measure orthogonal polarization states. To control stray light, all internal surfaces except
the active optical elements are coated with a microwave absorber [14], forming a blackbody

– 4 –

Figure 22. Left panel: The two satellites inside the Ariane-V fairing. The main satellite is on top (the Sun
shields, in stowed position, are not shown). The bottom satellite (displayed in the Ariane-V SYLDA for a
possible launch configuration) provides a set of calibrators for the observatory and the high gain, high data rate
communication system. Right panel: Detail of main satellite, showing a possible layout for the two PRISM
instruments with the locations of the off-axis telescope with a 3.5 x 4.2 m primary, the polarimeter focal plane,
and the spectrometer.

is achieved with the coldest possible mirror temperature. While increased sensitivity is not critical for the de-
tection of dusty galaxies (which is background limited), it is important for the detection of galaxy clusters via
the thermal SZ effect, which is one of the main mission objectives.

10.2.2 Cooling chain
In addition to the cooling of the large telescope of the polarimetric imager to below 10 K, the 50 cm telescope
of the spectrophotometer will be cooled to 2.7 K, and the detectors will operate at sub-Kelvin temperatures.

The cooling chain will rely on a first stage of passive cooling of the payload using a set of deployable
V-grooves, as well as an inner solid cylindrical shield (Fig. 21). The large mirror of the polarimetric imager will
be cooled using a cryogenic chain that will use as a starting point the study of the SPICA 3.2 meter telescope
cooling system, for which a temperature of 5-6K can be achieved. PRISM has a mirror about 30% bigger in
area, but the requirement on the telescope temperature (< 10K) is less stringent (however with an objective
of 4K if possible for optimal sensitivity). The focal planes of both instruments will be cooled to 0.1K using a
cryogenic system adapted from the dilution refrigerator onboard Planck but with continuous helium recycling
for a longer mission duration of 4 years (baseline) or beyond.

10.2.3 Scan strategy
The observing strategy must provide: (1) full sky coverage for both instruments; (2) cross-linked scan paths and
observation of all sky pixels in many orientations for all detectors of the polarimetric imager; (3) fast scanning
of the imager to avoid low-frequency drifts; (4) slow scanning for the spectrophotometer field of view to allow
for few seconds long interferogram scans with negligible depointing; (5) avoiding direct solar radiation on the
payload.

– 35 –

PRISM [50 cm spectrophotometer 
+imager: 4m telescope, 7600 
bolometers, ~30 frequency bands] 
(billions and billions....)



10 30 60 100 300 600 1000
ν [GHz]

10-28

10-27

10-26

10-25

10-24

10-23

Δ
I ν

 [ 
W

 m
-2

 s-1
 H

z-1
 sr

-1
 ]

Reionization

Decaying particle

Silk damping (standard)

Recombination lines

Monopole distortion signals

Silk damping (step)

Average CMB spectral distortions

PIXIE’s sensitivity  

negative branch: ‘thin’
A

bs
ol

ut
e 

va
lu

e 
of

 In
te

ns
ity

 s
ig

na
l positive branch: ‘heavy’

PRISM sensitivity  

PRISM white paper, Chluba, les Houches Lectures

EXPECTED SIGNALS/SENSITIVITY

recombination lines predicted by Zel’dovich/Kurt/Sunyaev (1969),  
reviewed in Sunyaev/Chluba 0710.2879 
	



SILK DAMPING AND DISTORTION FROM ADIABATIC MODES
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Figure 1. Power which disappears from the anisotropies appears in the monopole as spectral distortions. CMB
damped and undamped power spectra were calculated using analytic approximations [33–36]. Scale range
probed by the CMB anisotropy experiments such as COBE-DMR, WMAP, Planck, SPT and ACT is marked
by the shaded region on the left side of the plot. Spectral distortions probe much smaller scales up to the
blackbody photosphere boundary at ` ⇠ 108.

spectrum. The energy stored in the perturbations (or the sound waves in the primordial radiation
pressure dominated plasma) on the dissipating scales, however, does not disappear but goes into the
monopole spectrum creating y, µ and i-type distortions, see Fig. 1. This e↵ect was estimated initially
by Sunyaev and Zeldovich [2] and later by Daly [43] and Hu, Scott and Silk [44]. Recently, the
energy dissipated in Silk damping and going into the spectral distortions was calculated precisely in
[45], correcting previous calculations and also giving a clear physical interpretation of the e↵ect in
terms of mixing of blackbodies [45, 46] 2. The calculations in [45] showed that photon di↵usion just
mixes blackbodies and the resulting distortion is a y-type distortion which can comptonize into i-type
or µ-type distortion, depending on the redshift. We can write down the (fractional) dissipated energy
(Q ⌘ �E/E�) going into the spectral distortions as [45, 46]

dQ
dt
= �2

d
dt

Z
k2dk
2⇡2 P�i (k)

2
6666664
1X

`=0

(2` + 1)⇥2
`

3
7777775 ⇡ �2

d
dt

Z
k2dk
2⇡2 P�i (k)

h
⇥2

0 + 3⇥2
1

i
, (2.1)

where ⇥`(k) are the spherical harmonic multipole moments of temperature anisotropies of the
CMB, t is proper time and P�i (k) = 4

0.4R⌫+1.5 P⇣ ⇡ 1.45P⇣ , P⇣ = (A⇣2⇡2/k3)(k/k0)ns�1+ 1
2 dns/d ln k(ln k/k0),

the amplitude of comoving curvature perturbation A⇣ is equivalent to �2
R in Wilkinson Microwave

2See [47] for a slightly di↵erent way of calculating µ-type distortions and also [48].

– 3 –

Mode dissipation mixes black bodies -- these distortions begin their life as y 
distortions, the epoch determines the rest

From Khatri 2012

NEARLY  Scale-invariant LCDM cosmology 
µ ⇠ 2⇥ 10�8

y ⇠ 4⇥ 10�9



SUPERPOSITION OF BLACKBODIES THROUGH DIFFUSION

kD ⇠ 4⇥ 10�6(1 + z)3/2 Mpc�1

✴Free electron sees average spectrum — not BB 
✴Rescatters into homogeneous component (spectral distortion) 
✴l=2 is first piece that cannot be gauged away: from diffusion 

λD≈N1/2λC

N=η/λC



SUPERPOSITION OF BLACKBODIES
Rishi Khatri et al.: Mixing of blackbodies
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Fig. 1. Average of blackbodies of temperature T +∆T and T −∆T creates a new spectrum marked
’Average(Y)’ which is different from blackbody spectrum marked with temperature T . The aver-
age spectrum is just the usual y- type distortion with respect to a new blackbody at temperature
T [1 + (∆T/T )2], with the two crossing at x = 3.83. At redshifts z ! 105 the average spectrum
will comptonize to Bose-Einstein spectrum marked µ above. All three spectra, T [1 + (∆T/T )2],
Average(Y), and µ, have the same number density of photons. Average/y-type spectrum and Bose-
Einstein/µ-type spectrum also have the same energy density which is greater than the energy density
in the blackbody spectrum with temperature T [1 + (∆T/T )2] by 1/3 of the initial energy density
excess over that of blackbody with temperature T . We have used linear order formulae to calculate
the y and µ distortions in the figure but used a large value of ∆T/T to make differences between
different curves visible.

We can calculate the final temperature of a blackbody having the same number density of photons
as the initial average Ninitial.

Tfinal =
(

Ninitial
bR

)1/3

≈ T
⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 +
(

∆T
T

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

. (7)

This is exactly the temperature, Tnew, of the blackbody we got by averaging the intensity in Eq. (4).
Thus all the initial photons go into creating a blackbody with a higher temperature. The entropy
density of this new blackbody is also identical to the initial average entropy density S initial because
number density and entropy density have the same T 3 temperature dependence. The energy density
of the new blackbody is however given by,

Efinal = aRT 4final ≈ aRT
4

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 + 4
(

∆T
T

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

< Einitial. (8)

5

From Khatri 2012

pointed out in Chluba/Sunyaev 2004



✴ COSMOTHERM (Chluba 2013) -- follows 80 moments, all relevant 
reactions	



✴ Energy lost to Silk damping:

HEATING FROM ACOUSTIC MODE DISSIPATION



✴ CMB/LSS	



!

✴ CMB	



!

✴ Lyman-α forest	



!

✴ 21-cm cosmology	



!

✴ Y-distortions [but confusion from reionization!]	



!

!
✴ μ-distortions 

NEW PROBE OF SMALL-SCALE PERTURBATIONS

20

1 Mpc�1 ⌧ k ⌧ 50 Mpc�1
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Figure 14. CMB distortion at high frequencies. The approximations are
explained in Sect. 6.3. For the case without dissipation µ∞ ≃ −2.7 × 10−9

and ye ≃ −6.8 × 10−10. The case nS = 0.96 and nrun = 0 is represented by
µ∞ ≃ 1.4 × 10−8 and ye ≃ 3.8 × 10−9. The balanced injection scenario is
well approximated by a pure y-distortion, µ∞ ≃ 0 and ye ≃ 1.8 × 10−9.

6.4 Numerical estimates for µ, y, and ∆ργ/ργ

Armed with the above formulae we can compute the expected val-
ues for µac, yac, and ∆ργ/ργ

∣

∣

∣

ac caused by the dissipation of acous-
tic modes. For energy release well before recombination we can
use the simple approximations for the effective heating rate dis-
cussed in Sect. 5.1. However, using the same approximations in
the y-era the resulting y-parameter is overestimated by a factor of
≃ 2 − 3 in comparison with the perturbation code. This is because
the breakdown of the tight-coupling approximation and the begin-
ning of free-streaming are not captured correctly by these simple
expressions, which leads to a significantly higher effective heating
rate (see Fig. 10).

In Fig. 15 we show the numerical estimates obtained with our
perturbation code. One can see that the values depend strongly on
both nS and nrun. For all curves we used Aζ = 2.4 × 10−9, however,
the obtained values are directly proportional to this and can easily
be rescaled. The curves for µac shown in Fig. 15 can be represented
using the simple fitting formula

µac ≈ 5.54 × 10−4Aζ exp
(

9.92 γ0 n1.23γ1
S + 47.2 nrun

)

,

γ0 = 1 + 2.91nrun + 23.6n2
run,

γ1 = 1 − 0.2nrun − 17.8n2
run, (63a)

which clearly indicates the strong dependence on nrun. The results
for the effective y-parameter are approximately given by

yac ≈ 2.85 × 10−2Aζ exp
(

4.32 γ0 n1.53γ1
S + 3.51 γ2 nrun

)

,

γ0 = 1 + 4.68nrun + 22.8n2
run,

γ1 = 1 − 1.24nrun − 14.2n2
run,

γ2 = 1 − 7.7nrun, (63b)
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Figure 15.Approximate values for the chemical potential, µac, the Compton
y-parameter, yac, and total energy release, ∆ργ/ργ

∣

∣

∣ac, caused by the dissipa-
tion of acoustic modes in the redshift range 200 ! z ! 4 × 107 for different
values of nS and nrun. All curves are for Aζ = 2.4 × 10−9. The lines are
separated by ∆nrun = 0.01 (alternating solid/dashed). The dash-dotted/blue
line shows the negative chemical potential caused by BE condensation of
photons −µBE = 2.7 × 10−9. Models along that line correspond to balanced
injection scenarios (Sect. 6.2). In the central panel the dash-dotted/red line
indicates the approximate y-parameter yac for those cases.

and the total energy release can be represented with
∆ργ

ργ

∣

∣

∣

∣

∣

∣

ac
≈ 2.78 × 10−1Aζ exp

(

4.54 γ0 n2.5γ1
S + 3.14 γ2 nrun

)

,

γ0 = 1 + 32.9nrun + 792n2
run − 1677n3

run ,

γ1 = 1 − 6.5nrun − 294n2
run + 1173n3

run,

γ2 = 1 + 35.8nrun − 147n2
run − 7025n3

run . (63c)
c⃝ 0000 RAS, MNRAS 000, 000–000

 Nearly scale-invariant LCDM cosmology 

ADIABATIC COOLING
From Chluba 2012

PIXIE
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Figure 17. Possible limits on nS and nrun derived from measurements of µ
and y-type distortions with PIXIE. The coloured regions show 1σ through
5σ detection limits. Models in agreement with WMAP7 (Komatsu et al.
2011), ACT (Dunkley et al. 2011) and SPT (Keisler et al. 2011) are indi-
cated. The dashed/black line shows models with balanced energy release
during the µ-era. Above this line the net µ-parameter caused by the dissipa-
tion and BE condensation process is expected to be positive, while below
the line it will be in the range −2.7 × 10−9 ! µ ! 0. Also in the upper
panel the dotted lines indicate how much the 1σ limit from µ would im-
prove with sensitivities increased by the annotated factors. Notice that for
10 times PIXIE sensitivity a lower bound appears, since the negative µ-
distortion from BE condensation of CMB photons becomes observable at
the ≃ 2.7σ level.

sonable ranges of parameters, because the heating by Silk-damping
is normally several times larger than the cooling from BE conden-
sation in the y-era. For the currently proposed sensitivity PIXIE is
slightly more sensitive to the y-distortion from the dissipation pro-
cess than the µ-part. However, as mentioned above, the y-distortion
part has several competing astrophysical processes at low redshifts
that make a separation more difficult. We mention that increasing
the sensitivity by a factor of ten relative to PIXIE could in principle
allow ≃ 5σ detections of the y-distortion caused by the damping of
acoustic waves for all models shown in Fig. 17.

In this work we have only considered the simplest
parametrization of the primordial power spectrum, allowing run-
ning of the spectral index, nS. However, given the large va-
riety of inflationary models (some examples of possible in-
terest are Mukhanov & Chibisov 1981; Silk & Turner 1987;

Salopek et al. 1989; Lehners et al. 2007; Ben-Dayan & Brustein
2010; Barnaby et al. 2012), the energy release in the µ- and y-era
can differ by a large amount. Models with extra power on scales
50 Mpc−1

! k ! 104 Mpc−1, corresponding to the photon diffusion
scale at z ≃ 5 × 104 to z ≃ 2 × 106, will enhance the chemical po-
tential distortion, while suppression of power on these scales leads
to less energy release. Measurements of the CMB spectrum may
therefore allow constraints on inflationary models at scales well be-
low those of the CMB today. The amplitude of the net µ-distortion
is therefore very uncertain and could even be several times larger.
However, a detailed analysis for more exotic inflationary models is
beyond the scope of this paper.

We also mention that to give the source terms for the aver-
age distortion in second order perturbation theory one has to com-
pute ensemble averages. This implies that predictions for the asso-
ciated spectral distortions are in principle limited by cosmic vari-
ance. However, the dissipation of perturbations happens close to the
diffusion length, which at high redshifts is about two orders of mag-
nitude smaller than the horizon, such that cosmic variance on these
scales is negligible. On the other hand, during and after hydrogen
recombination the y-type distortions get contributions from scales
up to the horizon. These contributions will have cosmic variance
similar to the CMB power spectrum on these scales. However y-
type distortions generated after recombination, in particular during
reionization due to thermal SZ and second order Doppler effects,
are expected to be more than an order of magnitude larger, and sep-
arating the contribution of Silk damping would be challenging in
any case. Thus for y-type distortions uncertainties in the low red-
shift contributions by far outweigh cosmic variance.

7 SUMMARY

We have presented, for the first time, a consistent and accurate cal-
culation for the spectral distortions of the CMB arising from the
dissipation of acoustic waves (Silk damping) in the early Universe.
All previous calculations (except for Daly 1991) used the classical
expression for energy density stored by acoustic waves in the radi-
ation part of the primordial plasma, which turns out to omit some
details. Here we derive the evolution equation for the average CMB
spectral distortions including uniform heating of baryonic matter
and accounting for the effect of perturbations in the cosmological
medium. We consistently treat the problem in second order pertur-
bation theory considering second order Compton energy exchange
for the Boltzmann collision term. The final evolution equation has
order 2×2 and is discussed in Sect. 6.

Unlike in first order perturbation theory, the frequency-
dependence of the second order Boltzmann equation cannot be di-
rectly factored out. We show, however, that a separation can be
found using a definition of spectral distortions based on photon
number conservation. With this definition only y-type distortion
terms are present in the second order Boltzmann equation. Thus
multiplying the Boltzmann equation by x2 and integrating over x
makes the distortion vanish. The frequency-dependence of the sur-
viving, pure temperature perturbation factors out (similar to to the
case for the first order Boltzmann equation). After making use of
the equation obtained above to isolate the pure temperature part,
we also obtain an evolution equation for the y-part, in which again
the frequency-dependence factors out. We utilize this procedure to
separate the full 2×2 Boltzmann equation into evolution equations
for pure spectral distortions and second order average temperature.

Our detailed derivation (Appendix C) of the Boltzmann colli-
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Figure 17. Possible limits on nS and nrun derived from measurements of µ
and y-type distortions with PIXIE. The coloured regions show 1σ through
5σ detection limits. Models in agreement with WMAP7 (Komatsu et al.
2011), ACT (Dunkley et al. 2011) and SPT (Keisler et al. 2011) are indi-
cated. The dashed/black line shows models with balanced energy release
during the µ-era. Above this line the net µ-parameter caused by the dissipa-
tion and BE condensation process is expected to be positive, while below
the line it will be in the range −2.7 × 10−9 ! µ ! 0. Also in the upper
panel the dotted lines indicate how much the 1σ limit from µ would im-
prove with sensitivities increased by the annotated factors. Notice that for
10 times PIXIE sensitivity a lower bound appears, since the negative µ-
distortion from BE condensation of CMB photons becomes observable at
the ≃ 2.7σ level.

sonable ranges of parameters, because the heating by Silk-damping
is normally several times larger than the cooling from BE conden-
sation in the y-era. For the currently proposed sensitivity PIXIE is
slightly more sensitive to the y-distortion from the dissipation pro-
cess than the µ-part. However, as mentioned above, the y-distortion
part has several competing astrophysical processes at low redshifts
that make a separation more difficult. We mention that increasing
the sensitivity by a factor of ten relative to PIXIE could in principle
allow ≃ 5σ detections of the y-distortion caused by the damping of
acoustic waves for all models shown in Fig. 17.

In this work we have only considered the simplest
parametrization of the primordial power spectrum, allowing run-
ning of the spectral index, nS. However, given the large va-
riety of inflationary models (some examples of possible in-
terest are Mukhanov & Chibisov 1981; Silk & Turner 1987;

Salopek et al. 1989; Lehners et al. 2007; Ben-Dayan & Brustein
2010; Barnaby et al. 2012), the energy release in the µ- and y-era
can differ by a large amount. Models with extra power on scales
50 Mpc−1

! k ! 104 Mpc−1, corresponding to the photon diffusion
scale at z ≃ 5 × 104 to z ≃ 2 × 106, will enhance the chemical po-
tential distortion, while suppression of power on these scales leads
to less energy release. Measurements of the CMB spectrum may
therefore allow constraints on inflationary models at scales well be-
low those of the CMB today. The amplitude of the net µ-distortion
is therefore very uncertain and could even be several times larger.
However, a detailed analysis for more exotic inflationary models is
beyond the scope of this paper.

We also mention that to give the source terms for the aver-
age distortion in second order perturbation theory one has to com-
pute ensemble averages. This implies that predictions for the asso-
ciated spectral distortions are in principle limited by cosmic vari-
ance. However, the dissipation of perturbations happens close to the
diffusion length, which at high redshifts is about two orders of mag-
nitude smaller than the horizon, such that cosmic variance on these
scales is negligible. On the other hand, during and after hydrogen
recombination the y-type distortions get contributions from scales
up to the horizon. These contributions will have cosmic variance
similar to the CMB power spectrum on these scales. However y-
type distortions generated after recombination, in particular during
reionization due to thermal SZ and second order Doppler effects,
are expected to be more than an order of magnitude larger, and sep-
arating the contribution of Silk damping would be challenging in
any case. Thus for y-type distortions uncertainties in the low red-
shift contributions by far outweigh cosmic variance.

7 SUMMARY

We have presented, for the first time, a consistent and accurate cal-
culation for the spectral distortions of the CMB arising from the
dissipation of acoustic waves (Silk damping) in the early Universe.
All previous calculations (except for Daly 1991) used the classical
expression for energy density stored by acoustic waves in the radi-
ation part of the primordial plasma, which turns out to omit some
details. Here we derive the evolution equation for the average CMB
spectral distortions including uniform heating of baryonic matter
and accounting for the effect of perturbations in the cosmological
medium. We consistently treat the problem in second order pertur-
bation theory considering second order Compton energy exchange
for the Boltzmann collision term. The final evolution equation has
order 2×2 and is discussed in Sect. 6.

Unlike in first order perturbation theory, the frequency-
dependence of the second order Boltzmann equation cannot be di-
rectly factored out. We show, however, that a separation can be
found using a definition of spectral distortions based on photon
number conservation. With this definition only y-type distortion
terms are present in the second order Boltzmann equation. Thus
multiplying the Boltzmann equation by x2 and integrating over x
makes the distortion vanish. The frequency-dependence of the sur-
viving, pure temperature perturbation factors out (similar to to the
case for the first order Boltzmann equation). After making use of
the equation obtained above to isolate the pure temperature part,
we also obtain an evolution equation for the y-part, in which again
the frequency-dependence factors out. We utilize this procedure to
separate the full 2×2 Boltzmann equation into evolution equations
for pure spectral distortions and second order average temperature.

Our detailed derivation (Appendix C) of the Boltzmann colli-

c⃝ 0000 RAS, MNRAS 000, 000–000

BICEP+PLANCK?



Spectral distortions from primordial isocurvature

23

with J.Chluba 
            arXiv:1304.4596, MNRAS 434, 1619 

         



ZOOLOGY OF INITIAL CONDITIONS



ZOOLOGY OF INITIAL CONDITIONS



ZOOLOGY OF INITIAL CONDITIONS

 



ZOOLOGY OF INITIAL CONDITIONS

 



VELOCITY ISOCURVATURE MODES
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Momentum density also gravitates!



VELOCITY ISOCURVATURE MODES

Example:

Momentum density also gravitates!

All density initial conditions can be expressed in terms of these! 
These conditions are not conserved under fluid evolution 



✴ Axion-type isocurvature:	


!

!

✴ Curvaton-type isocurvature: 	



✴ Curvaton dominates after inflation, seeds adiabatic 	



✴ Baryons/CDM produced before    growth complete: 
isocurvature from mismatch

TWO FLAVORS OF CDM ISOCURVATURE

29



✴ Sources entropy fluctuation in species that are generated before curvaton dom.	



✴ Instead, have a spectator     (curvaton) that briefly dominates after inflation	



CURVATON MODELS AND ISOCURVATURE

30

✴ Hard for an inflationary model to do everything you want	



✴  Curvaton dominates, decays, adiabatic (correlated with isocurvature) results	
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✴ If PQ symmetry broken during/before inflation

Axions carry isocurvature

31
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2⇡
Quantum zero-point fluctuations!
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✴ Subdominant species seed isocurvature fluctuations
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✴ WMAP 7-year constraints (Komatsu/Larson et al 2010)
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✴ WMAP 7-year constraints (Komatsu/Larson et al 2010)

OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE
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✴ Constraints relax if assumptions (scale-invariance, 
single isocurvature mode) relaxed: Bean et al. 2009

CI NID NIV

nadi = n iso nadi = n iso nadi = n isor iso
< 0.13 < 0.08 < 0.14

CI+NID+NIV No BBN/bias

0.44 ± 0.09 0.51 ± 0.09



✴ Planck 1st-year temperature constraints (Et al et al..., 2013)

OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

32

✴ Constraints relax if assumptions (scale-invariance, 
single isocurvature mode) relaxed: Bean et al. 2009

CI NID NIV

nadi = n iso nadi = n iso nadi = n isor iso
< 0.13 < 0.08 < 0.14

CI+NID+NIV No BBN/bias

0.44 ± 0.09 0.51 ± 0.09



HEATING AND DISTORTION FROM ALTERNATE INITIAL CONDITIONS
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Figure 3. E↵ective heating rate, d(Qac/⇢�)/ dz, for di↵erent pure perturbation modes. We multiplied by (1+z) and set the overall amplitude of the perturbation
power spectrum to unity, i.e. Ai = 1. We also used ni,run = 0 in all cases. For the upper panel, we used spectral index ni = 1 while in the lower we
varied it for the CDM isocurvature modes as labeled. The annotated factors are roughly fcb ' (⌦c/⌦b)2, fc ' (3/8)(⌦c/⌦m)2(keq/k0)2[1 � (4R⌫/15)2]2,
f⌫ ' 25(1 + 3R⌫/5)2/[4(R⌫/R�)2(1 + 4R⌫/15)2] and fd ' 27(1 + 3R⌫/5)2/[4(1 + 6R⌫/5)2]. These illustrate the relative heating e�ciencies for di↵erent
perturbation modes with the same overall amplitude. The results were obtained by direct integration of the perturbation equations using CosmoTherm.

whereP⇤i (k) ⌘ Ai (k/k0)n⇤i �1+ 1
2 ni,run ln(k/k0). We confirmed numerically

that at redshifts z & 104 these approximations work pretty well,
giving ' 10% � 15% precision for the e↵ective heating rate. Here,
" = 2D2 ' const defines a mode dependent heating e�ciency.
This implies that the early SDs produced by the di↵erent modes
considered here are all degenerate with an overall normalization
when comparing AD, NDI and NVI for n⇤i = ni on one hand, with
BI and CI modes for n⇤i = ni � 2 on the other. The di↵erences
derive from how much of the initial perturbations in the di↵erent
fluid variables at small scales actually appear as perturbations in
the photon field.

Comparing the heating e�ciencies, Eq. (21), shows that AD
modes dissipate their energy roughly 16 times more e�ciently than

NDI fluctuations. Similarly, NVI modes have ' 4.7 times higher
heating e�ciency than NDI modes. Furthermore, BI modes source
early SDs at about (⌦c/⌦b)2 ' 24 lower e�ciency than CI modes,
while in comparisons to AD modes CI fluctuations for n⇤i = ni � 2
cause ' 5.6 times larger heating. All these statements are confirmed
by our numerical results (cf. Fig. 3).

Closer to the recombination epoch baryon loading no longer
is negligible and we see a suppression of the heating rate relative to
the high-redshift scaling (cf. Fig. 3). After the recombination epoch
(z . 1000), the e↵ective heating rates drop significantly as photons
begin free streaming. At this late stage, the second-order Doppler
e↵ect starts contributing significantly (Chluba et al. 2012b). For the
baryon and CDM isocurvature modes, the post-recombination heat-
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Isocurvature in relativistic species yields more energy injection during μ-era

Isocurvature in non-relativistic species less suppressed during matter domination
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Figure 3. E↵ective heating rate, d(Qac/⇢�)/ dz, for di↵erent pure perturbation modes. We multiplied by (1+z) and set the overall amplitude of the perturbation
power spectrum to unity, i.e. Ai = 1. We also used ni,run = 0 in all cases. For the upper panel, we used spectral index ni = 1 while in the lower we
varied it for the CDM isocurvature modes as labeled. The annotated factors are roughly fcb ' (⌦c/⌦b)2, fc ' (3/8)(⌦c/⌦m)2(keq/k0)2[1 � (4R⌫/15)2]2,
f⌫ ' 25(1 + 3R⌫/5)2/[4(R⌫/R�)2(1 + 4R⌫/15)2] and fd ' 27(1 + 3R⌫/5)2/[4(1 + 6R⌫/5)2]. These illustrate the relative heating e�ciencies for di↵erent
perturbation modes with the same overall amplitude. The results were obtained by direct integration of the perturbation equations using CosmoTherm.

whereP⇤i (k) ⌘ Ai (k/k0)n⇤i �1+ 1
2 ni,run ln(k/k0). We confirmed numerically

that at redshifts z & 104 these approximations work pretty well,
giving ' 10% � 15% precision for the e↵ective heating rate. Here,
" = 2D2 ' const defines a mode dependent heating e�ciency.
This implies that the early SDs produced by the di↵erent modes
considered here are all degenerate with an overall normalization
when comparing AD, NDI and NVI for n⇤i = ni on one hand, with
BI and CI modes for n⇤i = ni � 2 on the other. The di↵erences
derive from how much of the initial perturbations in the di↵erent
fluid variables at small scales actually appear as perturbations in
the photon field.

Comparing the heating e�ciencies, Eq. (21), shows that AD
modes dissipate their energy roughly 16 times more e�ciently than

NDI fluctuations. Similarly, NVI modes have ' 4.7 times higher
heating e�ciency than NDI modes. Furthermore, BI modes source
early SDs at about (⌦c/⌦b)2 ' 24 lower e�ciency than CI modes,
while in comparisons to AD modes CI fluctuations for n⇤i = ni � 2
cause ' 5.6 times larger heating. All these statements are confirmed
by our numerical results (cf. Fig. 3).

Closer to the recombination epoch baryon loading no longer
is negligible and we see a suppression of the heating rate relative to
the high-redshift scaling (cf. Fig. 3). After the recombination epoch
(z . 1000), the e↵ective heating rates drop significantly as photons
begin free streaming. At this late stage, the second-order Doppler
e↵ect starts contributing significantly (Chluba et al. 2012b). For the
baryon and CDM isocurvature modes, the post-recombination heat-
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PIXIE SENSITIVITY

DISTORTIONS PROBE SPECTRAL SLOPE AND/OR INITIAL 
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Figure 5. Limits on the amplitude of the power spectrum at k > 1 Mpc�1 for di↵erent pure perturbations modes and spectral indices. The heavy lines show
constraints for a PIXIE-type experiment with 1� detection limits y = 2⇥10�9 and µ = 10�8. Light lines are present limits from COBE/FIRAS. Mode amplitudes
above the corresponding lines are/will be ruled out by CMB spectral distortion measurements. Assuming one overall power-law perturbation spectrum at small
scales, the limits derived from µ and y are not independent, and their ratio can in principle be used to distinguish AD, NDI and NVI on the one side from
BI and CI, on the other (see the text for discussion). Interpreting the limits independently, y-distortions constrain power at 1 Mpc�1 . k . 50 Mpc�1, while
the limit from µ probes power at 50 Mpc�1 . k . 11000 Mpc�1. Note also that we assumed pivot scale, k0 = 0.002 Mpc�1, to make the spectral distortion
constraint directly comparable with the large-scale CMB constraint; values for k⇤0 , k0 can be obtained by rescaling with (k⇤0/k0)1�n.

the presence of all four isocurvature modes with general correla-
tions (Planck Collaboration et al. 2013c). Even though the curva-
ton model can excite the NDI mode, the overall change in µ and y
over the null (adiabatic) hypothesis is of the order of 10%, and thus
undetectable at the sensitivity level possible with PIXIE. Future ad-
vances may change this dim state of a↵airs. An in-depth discussion
of other correlated models is beyond the scope of this paper.

6 CONCLUSIONS

In the future, spectral distortions of the CMB might provide a pow-
erful new probe of early-universe physics. Here, we studied dis-
tortions produced by the dissipation of small-scale perturbations,
exploring the dependence of the signal on the di↵erent types of
cosmological initial conditions. As one main result, we obtained a
unified formalism for the specific heating rates of the modes, allow-
ing us to describe the e↵ect of pure modes but also mode mixtures
in a quasi-analytic manner (see Sects. 3 and 4). Our expressions can
be used for precise computations of the SD signal using CosmoTh-
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Figure 5. Limits on the amplitude of the power spectrum at k > 1 Mpc�1 for di↵erent pure perturbations modes and spectral indices. The heavy lines show
constraints for a PIXIE-type experiment with 1� detection limits y = 2⇥10�9 and µ = 10�8. Light lines are present limits from COBE/FIRAS. Mode amplitudes
above the corresponding lines are/will be ruled out by CMB spectral distortion measurements. Assuming one overall power-law perturbation spectrum at small
scales, the limits derived from µ and y are not independent, and their ratio can in principle be used to distinguish AD, NDI and NVI on the one side from
BI and CI, on the other (see the text for discussion). Interpreting the limits independently, y-distortions constrain power at 1 Mpc�1 . k . 50 Mpc�1, while
the limit from µ probes power at 50 Mpc�1 . k . 11000 Mpc�1. Note also that we assumed pivot scale, k0 = 0.002 Mpc�1, to make the spectral distortion
constraint directly comparable with the large-scale CMB constraint; values for k⇤0 , k0 can be obtained by rescaling with (k⇤0/k0)1�n.

the presence of all four isocurvature modes with general correla-
tions (Planck Collaboration et al. 2013c). Even though the curva-
ton model can excite the NDI mode, the overall change in µ and y
over the null (adiabatic) hypothesis is of the order of 10%, and thus
undetectable at the sensitivity level possible with PIXIE. Future ad-
vances may change this dim state of a↵airs. An in-depth discussion
of other correlated models is beyond the scope of this paper.

6 CONCLUSIONS

In the future, spectral distortions of the CMB might provide a pow-
erful new probe of early-universe physics. Here, we studied dis-
tortions produced by the dissipation of small-scale perturbations,
exploring the dependence of the signal on the di↵erent types of
cosmological initial conditions. As one main result, we obtained a
unified formalism for the specific heating rates of the modes, allow-
ing us to describe the e↵ect of pure modes but also mode mixtures
in a quasi-analytic manner (see Sects. 3 and 4). Our expressions can
be used for precise computations of the SD signal using CosmoTh-
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✴ Small-field inflationary models with non-monotonic                                   

(Ben-Dayan/Brustein 2010) can evade Lyth Bound	
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Experimentally relevant!

✴ Model predicts                     (Chluba/Erickcek/Ben-Dayan 2012)	
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Small changes in shape, smoothness etc. of this as-
sumed power spectrum do not a↵ect our answers sig-
nificantly. We normalize the power spectrum by im-
posing the condition that the field is on the vacuum
manifold at all times, v2 =

⌦
|~'(x, ⌘)|2

↵
, yielding [7]:

v2 = NA↵
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We are interested in epochs long past the phase tran-
sition, and so ⌘ � ⌘t. Taking this limit in the above
integral, time independence of the l.h.s forces us to
set

⌫ = 1 + ↵/2, (15)

whereas for the r.h.s to equal v2, we have to set
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>:
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(16)

Furthermore, using the relationship between ⌫ and
↵ in Eq. (13) we get T

0

= (3/4)(1+2↵). We can now
determine the time-dependent field power-spectrum
using Eqs. (11)-(16):
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The power spectrum is computed and shown in
Fig. 2. The results depend only on k⌘ and are
thus self-similar, with a cuto↵ at k⌘ & 1 reflect-
ing the erasure of perturbations through vacuum re-
alignment as di↵erent regions come into causal con-
tact [7]. This network thus exhibits the scaling phe-
nomenon discussed in the Introduction.

B. Metric perturbations

To calculate the evolution of acoustic waves in the
baryon-photon fluid sourced by the scaling seeds, we
must compute the gravitational potential generated
by the scaling seeds. We work with the metric in
conformal Newtonian gauge

ds2 = a2[�(1 + 2�)d⌘2 + (1 � 2 )dx · dx], (18)

where we have neglected vector and tensor pertur-
bations for simplicity’s sake. In Fourier space, the
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FIG. 2. O(N) scalar-field power spectrum in a radiation-
dominated universe (arbitrary normalization). The
power spectrum depends only on k⌘, and is thus self-
similar. There exists an additional cuto↵ (not apparent
in this plot) at k⌘ = ⌘/⌘t � 102, set by the initial time
of the phase transition ⌘t.
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where the stress-energy tensor here includes contri-
butions from seeds, baryons, photons, neutrinos, and
dark matter. Linearly combining Eqs. (19)-(20) and
applying the anisotropic stress projection operator
k̂ik̂j � 1
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�ji to Eq. (21), we obtain

 k =
1

2m2

pl

a2

k2

✓
�T 0

0

� 3i
H
k

k̂j�T
0

j

◆
, (22)

�k =  k +
3

2m2

pl

a2

k2

✓
k̂ik̂j �

1

3
�ji

◆
�T i

j . (23)

Repeated indices are summed over. We now obtain
the seed potentials in a fixed realization of '(~x, ⌘).

It is helpful to decompose the stress-energy ten-
sor into seed and non-seed components, that is T ⌫

µ =

5
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Repeated indices are summed over. We now obtain
the seed potentials in a fixed realization of '(~x, ⌘).

It is helpful to decompose the stress-energy ten-
sor into seed and non-seed components, that is T ⌫

µ =

5

Maximal fluctuation on horizon scale
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where the stress-energy tensor here includes contri-
butions from seeds, baryons, photons, neutrinos, and
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Repeated indices are summed over. We now obtain
the seed potentials in a fixed realization of '(~x, ⌘).

It is helpful to decompose the stress-energy ten-
sor into seed and non-seed components, that is T ⌫

µ =
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Maximal fluctuation on horizon scale

Compute gravitational potential fluctuations
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Seeds drive baryon-photon plasma sound waves
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FIG. 5. The evolution of the radiation density pertur-
bations u� = �� � 4 for k = 102 Mpc�1. The dashed
line on the left corresponds to horizon entry. Outside
the horizon k⌘ ⌧ 1, |u�(k, ⌘)|2 / ⌘3. This also implies
that the dimensionless power spectrum⇠ k3|u�(k, ⌘)|2 /
(k⌘)3, corresponding to a scaling, white noise spectrum
on superhorizon scales. For k⌘ & 1, we see the char-
acteristic acoustic oscillations. For subhorizon scales,
 ⌧ �� even with seed potentials, hence u� ⇡ �� . Fi-
nally whexn the di↵usion wavenumber kD(⌘) < k, di↵u-
sion takes away the acoustic energy of the mode. The
dashed line on the right denotes kD(⌘) = k.

where ek are random variables with heke⇤
qi = �(k�

q), This is known as the ‘coherent approximation’
[2].

The two power spectra are shown in Fig. 3 and
Fig. 4. Since we are interesting in calculating spec-
tral distortions generated by the seeds, we will set
the perturbations in all the components (except the
seeds) to be zero initially. Given the linearity of the
equations, the solutions we will get will automati-
cally be fi(k, r) =

p
2⇡2�2

i (k, r)/k3 ek for the com-
ponent of interest. Here, one should think of y as
a time variable. There can be k dependence in the
solutions (apart from the k�3/2) because damping
breaks the scaling nature of the solutions in spite of
the scaling behavior of the seed potentials.

We solve our system numerically including modes
up to l = 6 in the neutrino hierarchy (we verified
numerical convergence at the 10�4 level going from
l = 2 to l = 6 in the neutrino hierarchy). We use the
current best fit cosmology from Planck temperature
data (Table 2, last column in Ref. [83]). The evolu-
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FIG. 6. The dimensionless power spectrum �2
u� (r =

k⌘) evaluated at the beginning and end of the µ era.
Explicity the top curve corresponds to �2

u� (k⌘f ) and

the bottom curve corresponds to �2
u� (k⌘i) where ⌘i and

⌘f = 9.1Mpc/c correspond to the conformal times at the
beginning and end of the µ era. The spectral distortions
may be estimated by integrating the di↵erence of the two
spectra (with a logarithmic measure).

tion of u�(k, r) for k = 102 Mpc�1 is shown in Fig.
III C. The vertical dashed lines indicate horizon en-
try and time when the mode starts getting damped
significantly respectively.

On super-horizon scales u� / ⌘3/2 whereas on
sub-horizon scales, we see the characteristic acous-
tic oscillations as well as exponential damping. In
general, acoustic oscillations maintain a fixed am-
plitude, set essentially by the amplitude at horizon
entry, until damping takes over. This is the charac-
teristic behavior of acoustic modes, with and with-
out seed potentials.

To understand this note that on subhorizon scales,
u� = �� � 4 ⇡ �� . This approximation is valid
because gravitational potentials will be suppressed
compared to the density perturbations in the domi-
nant component by factors of (k⌘)�2 because of Pois-
son’s equation. Hence the solution deep inside the
horizon is almost independent of the potential (in-
cluding the seed potentials), and we are simply see-
ing the usual acoustic and damping behavior.

To calculate the SD amplitude, we will need po-
tential power spectra at the beginning and end of
the µ era. These are calculated by solving for
u�(k, r) at a number of di↵erent k’s and evaluat-
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current best fit cosmology from Planck temperature
data (Table 2, last column in Ref. [83]). The evolu-
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FIG. 6. The dimensionless power spectrum �2
u� (r =

k⌘) evaluated at the beginning and end of the µ era.
Explicity the top curve corresponds to �2

u� (k⌘f ) and

the bottom curve corresponds to �2
u� (k⌘i) where ⌘i and

⌘f = 9.1Mpc/c correspond to the conformal times at the
beginning and end of the µ era. The spectral distortions
may be estimated by integrating the di↵erence of the two
spectra (with a logarithmic measure).

tion of u�(k, r) for k = 102 Mpc�1 is shown in Fig.
III C. The vertical dashed lines indicate horizon en-
try and time when the mode starts getting damped
significantly respectively.

On super-horizon scales u� / ⌘3/2 whereas on
sub-horizon scales, we see the characteristic acous-
tic oscillations as well as exponential damping. In
general, acoustic oscillations maintain a fixed am-
plitude, set essentially by the amplitude at horizon
entry, until damping takes over. This is the charac-
teristic behavior of acoustic modes, with and with-
out seed potentials.

To understand this note that on subhorizon scales,
u� = �� � 4 ⇡ �� . This approximation is valid
because gravitational potentials will be suppressed
compared to the density perturbations in the domi-
nant component by factors of (k⌘)�2 because of Pois-
son’s equation. Hence the solution deep inside the
horizon is almost independent of the potential (in-
cluding the seed potentials), and we are simply see-
ing the usual acoustic and damping behavior.

To calculate the SD amplitude, we will need po-
tential power spectra at the beginning and end of
the µ era. These are calculated by solving for
u�(k, r) at a number of di↵erent k’s and evaluat-
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Seeds drive baryon-photon plasma sound waves
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FIG. 5. The evolution of the radiation density pertur-
bations u� = �� � 4 for k = 102 Mpc�1. The dashed
line on the left corresponds to horizon entry. Outside
the horizon k⌘ ⌧ 1, |u�(k, ⌘)|2 / ⌘3. This also implies
that the dimensionless power spectrum⇠ k3|u�(k, ⌘)|2 /
(k⌘)3, corresponding to a scaling, white noise spectrum
on superhorizon scales. For k⌘ & 1, we see the char-
acteristic acoustic oscillations. For subhorizon scales,
 ⌧ �� even with seed potentials, hence u� ⇡ �� . Fi-
nally whexn the di↵usion wavenumber kD(⌘) < k, di↵u-
sion takes away the acoustic energy of the mode. The
dashed line on the right denotes kD(⌘) = k.

where ek are random variables with heke⇤
qi = �(k�

q), This is known as the ‘coherent approximation’
[2].
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l = 2 to l = 6 in the neutrino hierarchy). We use the
current best fit cosmology from Planck temperature
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Tensors source quadrupoles: 
 superimpose blackbodies!

Quadrupoles from Gravitational Waves
• Changing transverse traceless distortion of space, aka gravitational
 waves, creates quadrupole CMB anisotropy 
• Gravitational waves are frozen when larger than the horizon and
 oscillate and decay as radiation inside horizon

transverse-traceless
WHQVRU�distortion

✴l=2 anisotropy appears from GW, *NO* diffusion needed 
!
!
!

✴ Electron sees average spectrum — not BB 
✴Rescatters into homogeneous component (spectral distortion) 

(image from Wayne Hu’s website)
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Physics of tensor driving in baryon-photon plasma

✴No pressure support (no compression) 
✴Thomson scattering isotropizes radiation 
✴Baryons don’t cary shear — no Hubble damping

✴Driven, critically damped oscillator 
✴Diffusion/free-streaming populate higher multipole moments  

✴more anisotropy, additional ‘heating’ sources 
✴damped by powers of 
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Dissipation of tensor modes 5

The tensor power spectrum furthermore is modified by
changes of the e↵ective number of relativistic degrees of free-
dom during the electron-positron annihilation and the quark-gluon
phase transition (Watanabe & Komatsu 2006). This introduces sev-
eral features into the tensor power spectrum at small scales (see
Figs. 4 and 5 of Watanabe & Komatsu 2006), however, we ne-
glect these complications, which are only noticeable for very blue
tensor power spectra, and just include the e↵ect of neutrino free
streaming at all small scales. With this simplification, we find that
at 200 Mpc�1 . k . 2 ⇥ 104 Mpc�1 the tensor power is on av-
erage overestimated by ' 10% � 20%. At 2 ⇥ 104 Mpc�1 . k .
106 Mpc�1, the power is underestimated by a factor of ' 1.5, while
at 106 Mpc�1 . k . 109 Mpc�1 it is overestimated ' 1.5 times (cf.
Fig. 5 of Watanabe & Komatsu 2006).

A simple analytic expression for h(t, k) that include the e↵ect
of neutrino damping was derived by Dicus & Repko (2005). In-
cluding the small correction to ḣ = h0c/a due to photon damping4

(see Appendix D2), with Eq. (D9) and (11) we can approximate
the tensor contribution to the heating rate as (see Sect. 4.5 for an
alternative derivation)

d(Q/⇢�)
dt

������
T
⇡ 4H2

45⌧̇

Z kcut

0

k2dk
2⇡2 PT (k)Th(k⌘) e���⌘

= � 1
24(1 � R⌫)

Z kcut

0

k2dk
2⇡2 PT (k)Th(k⌘)

d
dt

e���⌘

Th(x) ⇡ 2

8>><
>>:

6X

n

an[n jn(x) � x jn+1(x)]

9>>=
>>;

2

(12)

where jn(x) denote spherical Bessel functions with the numeri-
cal coe�cients a0 = 1, a2 = 0.243807, a4 = 5.28424 ⇥ 10�2

and a6 = 6.13545 ⇥ 10�3 and d(��⌘)/ dt = 32H2(1 � R⌫)/[15⌧̇].
We also introduced a cuto↵ scale kcut (to regularize the integral),
which we discuss below, and assumed radiation domination so that
H ⇡ c/(a⌘). The dependence of Th(x) on x, both with and with-
out the e↵ect of neutrinos, is shown in Fig. 1. The contribution at
small scales is overestimated ' 1.5 times if neutrino damping is
neglected. At k⌘ & 5, one has Th(x) ' 1.29 cos2(k⌘).

For PT = 2⇡2ATk�3(k/k0)nT , the integrand of Eq. (12) scales
as ' knT k3 as k ! 0, while for k⌘ � 1 we have ' knT�1 cos2(k⌘).
At large scales, ḣ vanishes, so that no super-horizon heating oc-
curs. However, at small scales, we need to introduce a cut-o↵ scale,
kcut, to regularize the integral. For nT = 0, the dependence on the
cut-o↵ scale is only logarithmic, but for nT > 0 it becomes rather
strong (cf. Sect. 4.3.1). One scale is due to the end of inflation and
reheating, kend ' 1023 Mpc�1 (e.g., Boyle & Steinhardt 2008), how-
ever, a much larger scale is related to the photon mean free path,
�mfp/a ' (�TNea)�1 or kcut = �TNea ' 4.5⇥10�7(1+ z)2 Mpc�1. At
smaller scales, photons stream quasi freely, undergoing very few
scatterings and adding little extra heating, as we explain below. At
redshifts z ' 104 � 2 ⇥ 106 (relevant for the non-y distortion), we
thus have kcut ' 45 Mpc�1� few⇥106 Mpc�1. In contrast, for scalar
perturbations, only modes with wavenumber k . few ⇥ 104 Mpc�1

are important. Spectral distortions hence allow probing tensor per-
turbations to significantly smaller scales, simply because for scalar
perturbations Silk damping erases all temperature fluctuations be-
fore they can even reach the quasi-free streaming phase.

4 Although energetically this does not make a significant di↵erence, the
extra factor of e���⌘ is the origin of the heating, as we explain below. It also
emphasizes the similarities to the heating rate for adiabatic modes, Eq. (8).

Figure 2. Transfer function T (2)
2 at k = 10 Mpc�1 and k = 104 Mpc�1.

For k ⌧ ⌧0, the tight coupling approximation describes the solution very
well, while later the response of the photon field becomes weaker. The en-
velope of the solution can be represented with the approximation Eq. (E3a),
multiplied by

p
1.29/2 ' 0.8 to account for the suppression of the tensor

amplitude by neutrino damping after horizon crossing. The vertical lines in-
dicate the scale factor at horizon crossing, aH, and when the mode reaches
the di↵usion scale for scalar modes, aD, and free-streaming scale, afs.

4.2 Quasi-tight coupling approximation for tensors

To improve the approximation for the e↵ective heating rate caused
by tensor perturbations, we need to include radiative transfer e↵ects
at small scales, when photons approach the free streaming regime.
The evolution of fluctuations in the photon field that are sourced by
tensor perturbations is generally simpler than for scalars. Tensors
only excite modes with m = ±2 and in contrast to scalar perturba-
tions, the e↵ect of photons on the amplitude of the tensor perturba-
tions is negligible. Thus the photon transfer functions are character-
ized by the driving force of the tensor fluctuations at all phases of
the evolution, while for scalar perturbations the potentials quickly
disappear after entering the horizon.

With the analytic solution, Eq. (D9), for the tensor ampli-
tude h in the radiation dominated era, we can numerically solve
the photon Boltzmann hierarchy for ⇥(2)

` , E(2)
` and B(2)

` . We mod-
ified the Boltzmann solver of CosmoTherm (Chluba & Sunyaev

c� 0000 RAS, MNRAS 000, 000–000

✴Tensor evolves as  + neutrino damping terms

✴Ev’ln eqns in Hu/White
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2012) for this purpose. For k ⌧ ⌧0, where ⌧0 = (a/c)⌧̇, we
are in the tight coupling regime having ⇥(2)

2 ' �(4/3) h0/⌧0 and
E(2)

2 ' �
p

6⇥(2)
2 /4 =

p
2/3 h0/⌧0. To discuss numerical solutions

and the corrections caused by radiative transfer e↵ects, it is thus
useful to introduce the transfer functions

T (2)
` =

⇥(2)
`

�4/(3⌘⌧0)
, E(2)

` =
E(2)
`

�4/(3⌘⌧0)
, H (2)

` =
B(2)
`

�4/(3⌘⌧0)
.

Here, we set the initial amplitude of h to unity and used the domi-
nant scaling with conformal time, h0 ' Ah/⌘.

In Fig. 2 we illustrate the transfer functions for ⇥(2)
2 at

wavenumber k = 10 Mpc�1 and k = 104 Mpc�1. We included pho-
ton perturbations up to ` = 10 and assumed a standard cosmology
(Planck Collaboration et al. 2013) for the numerical computation.
We computed the recombination history with CosmoRec (Chluba
& Thomas 2011). For k ⌧ ⌧0 / ⌘�2, the tight coupling approx-
imation describes the solution very well, while later the response
of the photon field becomes much weaker. In this regime, photons
stream quasi freely and the response to the driving force becomes
weaker even if tensor modes are still present and wiggling around,
attempting to excite temperature and polarization anisotropies. The
problem becomes similar to a system of driven damped oscillators
that become more weakly coupled. The transition from tightly cou-
pled to weakly coupled occurs around afs ' 7 ⇥ 10�4(Mpc�1/k)1/2,
which for k = 10 Mpc�1 is afs ' 2 ⇥ 10�4 and afs ' 7 ⇥ 10�6 for
k = 104 Mpc�1. In contrast, for the di↵usion scale of scalar modes
we have aD ⇡ 2 ⇥ 10�4(k Mpc)�2/3, implying aD ⇡ 4.3 ⇥ 10�5 and
aD ⇡ 4.3 ⇥ 10�7, respectively.

With this picture in mind, one can find simple approxima-
tions for the envelope of the transfer functions, as explained in Ap-
pendix E. These approximations clearly capture the solution for
⇥(2)

2 very well (see Fig. 2), even close to the recombination era. In
the quasi-free streaming phase, the approximation slightly under-
estimates the envelope of the numerical solution. This is because
we only included multipoles ` = 2, but better agreement can be
achieved by adding term for ` = 3 (Appendix E1). We also find the
approximations for E(2)

2 and B(2)
2 to reproduce our numerical results

very well, but their contribution to the heating is generally smaller.
The amplitude of ⇥(2)

2 decays as ' ⌧0/k, while the one for E(2)
2 de-

clines faster ' (⌧0/k)2. This decay is much slower than for scalar
perturbations, which damp exponentially ' exp(�k2/k2

D) by photon
di↵usion. In the free streaming regime, also modes with ` > 2 are
excited, but overall these add a smaller correction [a few percent
for nearly scale invariant tensor power spectrum (Sect. 5)] to the
heating rate and thus can usually be neglected. In Sect. 4.2.3 we
include these corrections quasi-analytically.

To obtain the solutions for the photon transfer functions, we
introduced a hard cut at `max, setting multipoles with ` > `max to
zero. We find that the transfer functions coverage very rapidly at
all phases of the evolution relevant to us when changing `max. For
example, T (2)

2 changes only minimally when going from `max = 2
to 3, and changing to `max = 10, 20 and 40, already makes practi-
cally no di↵erence. The photon fluid simply does not support shear
waves at first order in perturbation theory, so that the error intro-
duced by truncating the mode hierarchy does not propagate very
strongly. We also find that the amplitude of the transfer functions
for higher multipoles drops rapidly in the free streaming regime.
This means that higher multipoles only add a tiny amount of extra
heating, implying that also the heating rate converges very rapidly
with `max (cf. Fig. 3 and Sect. 4.2.3).
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Figure 3. Averaged single-mode heating rate d(Q/⇢�)/ d ln z (amplitude
AT = 12) computed numerically for k = 103 Mpc�1 and di↵erent values
of `max. For comparison we show the result obtained with the approxima-
tions Eq. (13) and Eq. (17). We also indicated the location of afs.

4.2.1 Improved tight coupling approximation

With this more detailed understanding of the photon transfer e↵ects
at small scales, we can improve the approximation for the heating
rate. In particular, we do not need to add any cuto↵ scale, since
free streaming corrections naturally limit the contributions to the
heating from small scales. The more accurate heating rate reads

d(Q/⇢�)
dt

������
T
⇡ 4H2

45⌧̇

Z 1

0

k2dk
2⇡2 PT (k)Th(k⌘)T⇥(k/⌧0) e��

⇤
�(k,⌘) ⌘

= � 1
24(1 � R⌫)

Z kcut

0

k2dk
2⇡2 PT (k)Th(k⌘)

d
dt

e��
⇤
�(k,⌘) ⌘

T⇥(⇠) =
1 + 341

36 ⇠
2 + 625

324 ⇠
4

1 + 142
9 ⇠

2 + 1649
81 ⇠

4 + 2500
729 ⇠

6
, (13)

where the scale-dependent damping coe�cient is determined by

d(�⇤�⌘)
dt

=
32H2[1 � R⌫]T⇥(k/⌧0)

15⌧̇
. (14)

To obtain Eq. (13), we only used the transfer function for ⇥(2)
2 , re-

placing T (2)
2 ⇡ 1, which was used for the approximation Eq. (12),

with the more accurate expression from Eq. (E3a). We can see that
for k � ⌧0, the integrand of Eq. (13) scales as knT�1 cos2(k⌘)[⌧0/k]2,
so that for nT < 2 the integral converges. Due to the oscillatory be-
havior of Th(k⌘), in practice for k⌘ � 1 we use the averaged value,⌦Th(k⌘)

↵ ⇡ 1.29/2, over one oscillation phase. This eases the nu-
merical evaluation of the heating rate and does not make much of a
di↵erence for smooth power spectra.

In Fig. 3, we show the single-mode heating rate averaged
over one period for k = 103 Mpc�1. At early times, the single-
mode heating rate scales as d(Q/⇢�)/ d ln z ' a in all cases. In-
cluding all terms up to `max = 2 for the numerical calculation,
we see that Eq. (13) underestimates the heating rate by some
' 10%. This is because at this point we neglected corrections due
to E(2)

` , �
p

6⇥(2)
2 /4 and B(2)

` , 0, which become noticeable in the
free-streaming regime. These contributions can also be included
analytically, as we show next.

c� 0000 RAS, MNRAS 000, 000–000

✴GW damped by photons as well, energy  
✴Small change in GW amplitude, but main source of distortion
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Figure 5. Resulting µ-parameter from heating due to tensor perturba-
tions. The two groups are for {AT , k0} = {2.4 ⇥ 10�10, 0.002 Mpc�1} and
{2.2 ⇥ 10�10, 0.05 Mpc�1}. We used Eq. (18) to compute the heating rate,
but for the red dashed line we only included modes with k  2⇥104 Mpc�1.
The stars show the result obtained with approximation Eq. (19). For the sim-
plest parametrizations of the primordial tensor power spectrum, the shaded
region is ruled out by BBN/CMB constraints (Smith et al. 2006; Boyle &
Buonanno 2008).

accounts for the e�ciency of thermalization at early times. Correc-
tions to the shape of the spectral distortion caused by dissipation of
tensor perturbations in the µ � y transition era (104 . z . 3 ⇥ 105)
can be included using the Green’s function method of the CosmoTh-
erm

6 software package (Chluba & Sunyaev 2012; Chluba 2013b),
but for the purpose of this work, Eq. (24) is su�cient.

For k0 = 0.05 Mpc, with the approximation Eq. (19) for the
tensor heating rate, we find µ ⇡ {7.3 ⇥ 10�5, 7.8 ⇥ 10�3, 5.8} AT for
nT = {0, 0.5, 1}, respectively. Thus with AT ' 0.1A⇣ ' 2.2 ⇥ 10�10

we have a distortion µ ⇡ {1.6 ⇥ 10�14, 1.7 ⇥ 10�12, 1.3 ⇥ 10�9}. For
nT . 1, this agrees to within ' 10% � 30% with our more detailed
calculation (see Fig. 5). Generally, our numerical results show that
for nearly scale invariant tensor power spectra, the µ-distortion re-
mains six orders of magnitudes smaller than for the dissipation of
adiabatic modes, which for standard curvature power spectrum with
A⇣ = 2.2 ⇥ 10�9 at pivot scale k0 = 0.05 Mpc and nS = 0.96 gives
µ⇣ ' 1.4⇥10�8 (Chluba et al. 2012b). The adiabatic signal is just at
the detection limit of PIXIE (Kogut et al. 2011), showing that a de-
tection of the tensor contribution is very futuristic. For blue power
spectra, the distortion can become comparable to the signal caused
by adiabatic modes. However, in this case constraints on tensors
from CMB and big bang nucleosynthesis (BBN) become impor-
tant (Smith et al. 2006), limiting nT < 0.36 for r ' 0.1 (Boyle &
Buonanno 2008). Overall, the distortion signal from tensors is thus
expected to be much smaller than for adiabatic modes (see Fig. 5).

5.1 Comparing with Ota et al.

Our conclusions from the previous section are in broad agree-
ment with those of Ota et al. (2014). To compare more directly,
we change the power spectrum parameters to k0 = 0.002 Mpc
and AT = 2.4 ⇥ 10�10 and introduce a hard small-scale cuto↵

6 Available at www.Chluba.de/CosmoTherm
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Figure 6. Di↵erential contribution to the µ-distortion from di↵erent scales.
Transfer e↵ects introduce a cuto↵ at very small scales. The dotted vertical
line indicates the position of the cuto↵ used by Ota et al. (2014), while the
dashed-dotted lines are the data taken from their Fig. 2 (and divided by 2 to
convert to r = 0.1). See Sect. 5.1 text for more detailed explanation.

at kcut = 2 ⇥ 104 Mpc�1. Numerically integrating Eq. (13) with
Eq. (24), we find µ ⇡ {1.8 ⇥ 10�14, 6.0 ⇥ 10�9} for nT = {0, 1}.
This is about 10% � 20% smaller than the values reported in their
paper, µOta ⇡ {2.2⇥10�14, 7⇥10�9} for r = 0.1. A part of this di↵er-
ence can be explained by adding the other terms for ` = 2, Eq. (17),
which then gives µ ⇡ {1.9 ⇥ 10�14, 6.3 ⇥ 10�9}, but in particular for
nT = 0, the di↵erence remains comparable to ' 20%.

To understand the remaining di↵erence a little better, in Fig. 6
we show the digitized points (purple, dash-dotted) for dµ/ d ln k
taken from Fig. 2 of Ota et al. (2014) in comparison with our nu-
merical results. For the solid lines we used Eq. (13) for the heating
rate, while the dotted lines were computed with Eq. (18) for the
photon transfer function. For illustration, we also show the result
for dµ/ d ln k, when neglecting any photon transfer e↵ects (dashed
lines), which emphasizes the importance of free streaming e↵ects.
At the largest scales (k ' 0.3 Mpc�1), our curves for dµ/ d ln k prac-
tically coincide, although we find slightly larger contributions at
k . 0.1 Mpc�1. However, at smaller scales the curves of Ota et al.
(2014) are roughly 1.5 times larger than ours. Ota et al. (2014) used
the numerical output from the CLASS code (Lesgourgues 2011;
Blas et al. 2011; Tram & Lesgourgues 2013) to obtain the trans-
fer functions. The e↵ect of neutrino damping was only included
to CLASS recently (version 2.2; private communication, Lesgour-
gues). We find that after neglecting the damping e↵ect of neutrinos
our curves practically agree. Nevertheless, these corrections do not
change any of the main conclusions.

However, we do find that modes at k & 2 ⇥ 104 Mpc�1, which
were neglected by Ota et al. (2014), contribute significantly to
the heating, in particular for blue tensor power spectra. Includ-
ing all modes relevant at smaller scales, k0 = 0.002 Mpc and
AT = 2.4 ⇥ 10�10 we find µ ⇡ {1.9 ⇥ 10�14, 5.3 ⇥ 10�8}. Due to
the logarithmic dependence of the heating rate on the small-scale
cuto↵ [cf., Eq. (19)], for nT = 0 this did not make much of a di↵er-
ence. However, for nT ' 1, the distortion is underestimated roughly
7 times when neglecting modes at k > 2 ⇥ 104 Mpc�1 (see Fig. 5).
This becomes apparent when looking at the di↵erential contribu-
tion to µ as a function of scale (Fig. 6). For nT = 1, even scales
up to k ' 108 Mpc�1 contribute significantly to the value of µ,
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Figure 5. Resulting µ-parameter from heating due to tensor perturba-
tions. The two groups are for {AT , k0} = {2.4 ⇥ 10�10, 0.002 Mpc�1} and
{2.2 ⇥ 10�10, 0.05 Mpc�1}. We used Eq. (18) to compute the heating rate,
but for the red dashed line we only included modes with k  2⇥104 Mpc�1.
The stars show the result obtained with approximation Eq. (19). For the sim-
plest parametrizations of the primordial tensor power spectrum, the shaded
region is ruled out by BBN/CMB constraints (Smith et al. 2006; Boyle &
Buonanno 2008).

accounts for the e�ciency of thermalization at early times. Correc-
tions to the shape of the spectral distortion caused by dissipation of
tensor perturbations in the µ � y transition era (104 . z . 3 ⇥ 105)
can be included using the Green’s function method of the CosmoTh-
erm

6 software package (Chluba & Sunyaev 2012; Chluba 2013b),
but for the purpose of this work, Eq. (24) is su�cient.

For k0 = 0.05 Mpc, with the approximation Eq. (19) for the
tensor heating rate, we find µ ⇡ {7.3 ⇥ 10�5, 7.8 ⇥ 10�3, 5.8} AT for
nT = {0, 0.5, 1}, respectively. Thus with AT ' 0.1A⇣ ' 2.2 ⇥ 10�10

we have a distortion µ ⇡ {1.6 ⇥ 10�14, 1.7 ⇥ 10�12, 1.3 ⇥ 10�9}. For
nT . 1, this agrees to within ' 10% � 30% with our more detailed
calculation (see Fig. 5). Generally, our numerical results show that
for nearly scale invariant tensor power spectra, the µ-distortion re-
mains six orders of magnitudes smaller than for the dissipation of
adiabatic modes, which for standard curvature power spectrum with
A⇣ = 2.2 ⇥ 10�9 at pivot scale k0 = 0.05 Mpc and nS = 0.96 gives
µ⇣ ' 1.4⇥10�8 (Chluba et al. 2012b). The adiabatic signal is just at
the detection limit of PIXIE (Kogut et al. 2011), showing that a de-
tection of the tensor contribution is very futuristic. For blue power
spectra, the distortion can become comparable to the signal caused
by adiabatic modes. However, in this case constraints on tensors
from CMB and big bang nucleosynthesis (BBN) become impor-
tant (Smith et al. 2006), limiting nT < 0.36 for r ' 0.1 (Boyle &
Buonanno 2008). Overall, the distortion signal from tensors is thus
expected to be much smaller than for adiabatic modes (see Fig. 5).

5.1 Comparing with Ota et al.

Our conclusions from the previous section are in broad agree-
ment with those of Ota et al. (2014). To compare more directly,
we change the power spectrum parameters to k0 = 0.002 Mpc
and AT = 2.4 ⇥ 10�10 and introduce a hard small-scale cuto↵

6 Available at www.Chluba.de/CosmoTherm
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Figure 6. Di↵erential contribution to the µ-distortion from di↵erent scales.
Transfer e↵ects introduce a cuto↵ at very small scales. The dotted vertical
line indicates the position of the cuto↵ used by Ota et al. (2014), while the
dashed-dotted lines are the data taken from their Fig. 2 (and divided by 2 to
convert to r = 0.1). See Sect. 5.1 text for more detailed explanation.

at kcut = 2 ⇥ 104 Mpc�1. Numerically integrating Eq. (13) with
Eq. (24), we find µ ⇡ {1.8 ⇥ 10�14, 6.0 ⇥ 10�9} for nT = {0, 1}.
This is about 10% � 20% smaller than the values reported in their
paper, µOta ⇡ {2.2⇥10�14, 7⇥10�9} for r = 0.1. A part of this di↵er-
ence can be explained by adding the other terms for ` = 2, Eq. (17),
which then gives µ ⇡ {1.9 ⇥ 10�14, 6.3 ⇥ 10�9}, but in particular for
nT = 0, the di↵erence remains comparable to ' 20%.

To understand the remaining di↵erence a little better, in Fig. 6
we show the digitized points (purple, dash-dotted) for dµ/ d ln k
taken from Fig. 2 of Ota et al. (2014) in comparison with our nu-
merical results. For the solid lines we used Eq. (13) for the heating
rate, while the dotted lines were computed with Eq. (18) for the
photon transfer function. For illustration, we also show the result
for dµ/ d ln k, when neglecting any photon transfer e↵ects (dashed
lines), which emphasizes the importance of free streaming e↵ects.
At the largest scales (k ' 0.3 Mpc�1), our curves for dµ/ d ln k prac-
tically coincide, although we find slightly larger contributions at
k . 0.1 Mpc�1. However, at smaller scales the curves of Ota et al.
(2014) are roughly 1.5 times larger than ours. Ota et al. (2014) used
the numerical output from the CLASS code (Lesgourgues 2011;
Blas et al. 2011; Tram & Lesgourgues 2013) to obtain the trans-
fer functions. The e↵ect of neutrino damping was only included
to CLASS recently (version 2.2; private communication, Lesgour-
gues). We find that after neglecting the damping e↵ect of neutrinos
our curves practically agree. Nevertheless, these corrections do not
change any of the main conclusions.

However, we do find that modes at k & 2 ⇥ 104 Mpc�1, which
were neglected by Ota et al. (2014), contribute significantly to
the heating, in particular for blue tensor power spectra. Includ-
ing all modes relevant at smaller scales, k0 = 0.002 Mpc and
AT = 2.4 ⇥ 10�10 we find µ ⇡ {1.9 ⇥ 10�14, 5.3 ⇥ 10�8}. Due to
the logarithmic dependence of the heating rate on the small-scale
cuto↵ [cf., Eq. (19)], for nT = 0 this did not make much of a di↵er-
ence. However, for nT ' 1, the distortion is underestimated roughly
7 times when neglecting modes at k > 2 ⇥ 104 Mpc�1 (see Fig. 5).
This becomes apparent when looking at the di↵erential contribu-
tion to µ as a function of scale (Fig. 6). For nT = 1, even scales
up to k ' 108 Mpc�1 contribute significantly to the value of µ,
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✴Stronger signal for blue spectra 
✴Broader (but smaller) kernel compared to adiabatic modes 
✴Detection would be formidable in range not probed by BBN



Punch-line and next steps

✴ SD are a powerful probe of NID/NIV mode: all spectra 

✴ SDs are a nice probe of BI/CI mode: blue spectra 

✴ SDs can test anisotropy constraints to scaling-seed models 

✴ Blue tensors can yield detectable SDs 

✴ Future work 

✴ Vector-sourced SDs 

✴ Amplitude of vector/tensor SDs from scaling seeds



Curvaton

✴ Tested correlated isocurvature with amplitudes allowed by 
Planck CMB local-type non-G constraints

52

✴ All 18 scenarios allowed by Planck limits are ~2 orders of 
magnitude away from PIXIE detectability
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✴ Tested correlated isocurvature with amplitudes allowed by 
Planck CMB local-type non-G constraints

52

✴ All 18 scenarios allowed by Planck limits are ~2 orders of 
magnitude away from PIXIE detectability

Simple curvaton models are not a promising target for SD experiments!


