## Variation in the cosmic baryon fraction and the CMB

with D. Hanson, G. Holder, O. Doré, and M. Kamionkowski
Daniel Grin (KICP/Chicago)
Presentation for CAP workshop
09/24/2013
arXiv: 1107.1716 (DG, OD, and MK)- Phys. Rev. Lett. 107261301 arXiv: 1107.5047 (DG, OD, and MK)- Phys. Rev. D. 84123003
arXiv: 1306.4319 (DG, DH, GH, OD, and MK)- submitted to Phys. Rev. D

## ZOOLOGY OF INITIAL CONDITIONS

Adiabatic

$$
S_{i}=\frac{\delta n_{i}}{n_{i}}-\frac{\delta n_{\gamma}}{n_{\gamma}}
$$

$$
\nabla^{2} \Phi=4 \pi G \delta \rho
$$

$$
d s^{2}=a^{2}(\eta)\left\{-(1+2 \Phi) d \eta^{2}+(1-2 \Phi) d x^{i} d x_{j}\right\}_{2}
$$

## ZOOLOGY OF INITIAL CONDITIONS



$$
S_{i}=\frac{\delta n_{i}}{n_{i}}-\frac{\delta n_{\gamma}}{n_{\gamma}}
$$

$$
\nabla^{2} \Phi=4 \pi G \delta \rho
$$

$$
d s^{2}=a^{2}(\eta)\left\{-(1+2 \Phi) d \eta^{2}+(1-2 \Phi) d x^{i} d x_{j}\right\}_{2}
$$

## ZOOLOGY OF INITIAL CONDITIONS

## CDM isocurvature <br> $$
S_{c} \neq 0 \Delta \Phi=0
$$ <br> Neutrinos CDM <br> Photons Baryons

$$
S_{i}=\frac{\delta n_{i}}{n_{i}}-\frac{\delta n_{\gamma}}{n_{\gamma}}
$$

$$
\nabla^{2} \Phi=4 \pi G \delta \rho
$$

$$
d s^{2}=a^{2}(\eta)\left\{-(1+2 \Phi) d \eta^{2}+(1-2 \Phi) d x^{i} d x x_{j}\right\}_{2}
$$

## ZOOLOGY OF INITIAL CONDITIONS



$$
S_{i}=\frac{\delta n_{i}}{n_{i}}-\frac{\delta n_{\gamma}}{n_{\gamma}}
$$

$$
\nabla^{2} \Phi=4 \pi G \delta \rho
$$

$$
d s^{2}=a^{2}(\eta)\left\{-(1+2 \Phi) d \eta^{2}+(1-2 \Phi) d x^{i} d x x_{j}\right\}_{2}
$$

## ZOOLOGY OF INITIAL CONDITIONS



All density initial conditions can be expressed in terms of these! These conditions are not conserved under fluid evolution

## OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

* WMAP 7-year constraints (Komatsu/Larson et al 2010)

$$
P_{\mathrm{S}_{\mathrm{c}}}^{\text {axion }} / P_{\zeta} \lesssim 0.13 \quad P_{\mathrm{S}_{\mathrm{c}}}^{\text {curvaton }} / P_{\zeta} \lesssim 0.01
$$

## OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

* WMAP 7-year constraints (Komatsu/Larson et al 2010)

$$
P_{\mathrm{S}_{\mathrm{c}}}^{\text {axion }} / P_{\zeta} \lesssim 0.13 \quad P_{\mathrm{S}_{\mathrm{c}}}^{\text {curvaton }} / P_{\zeta} \lesssim 0.01
$$

* Constraints relax if assumptions (scale-invariance, single isocurvature mode) relaxed: Bean et al. 2009



## OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

* Planck 1st-year temperature constraints (Et al et al..., 2013)

$$
4.6 \times 10^{-3} \lesssim \frac{P_{\text {iso }}}{P_{\text {tot }}} \lesssim 1.6 \times 10^{-2}
$$

* Constraints relax if assumptions (scale-invariance, single isocurvature mode) relaxed: Bean et al. 2009



## BARYON-DM ISOCURVATURE

* "Nuisance" mode identified (Lewis 2002)


## Compensated Isocurvature Perturbation (CIP)

$$
\delta \rho_{\mathrm{b}}^{\mathrm{CIP}}+\delta \rho_{\mathrm{c}}^{\mathrm{CIP}}=0
$$

$$
\mathcal{S}_{\mathrm{bc}}=\frac{\delta n_{\mathrm{b}}}{n_{\mathrm{b}}}-\frac{\delta n_{\mathrm{c}}}{n_{\mathrm{c}}} \neq 0
$$

## Baryon-dark matter entropy

* Subdominant fluctuations: Adiabatic modes dominate, but do the relative number densities of DM and baryons fluctuate?


## BARYON-DM ISOCURVATURE

* "Nuisance" mode identified (Lewis 2002)



## Compensated Isocurvature Perturbation (CIP)

* Subdominant fluctuations: Adiabatic modes dominate, but do the relative number densities of DM and baryons fluctuate?


## BARYON-DM ISOCURVATURE

* "Nuisance" mode identified (Lewis 2002)

Adiabatic



Compensated Isocurvature Perturbation (CIP)

* Subdominant fluctuations: Adiabatic modes dominate, but do the relative number densities of DM and baryons fluctuate?


## CIPS AND THE SACHS-WOLFE EFFECT

* Observationally null in the CMB! (surprising but true)
* Vanishing Sachs-Wolfe effect from CIPs

$$
\begin{gathered}
\left(\frac{\Delta T}{T}\right)^{\mathrm{SW}}=-\frac{\zeta}{5}-\frac{2}{5} \frac{\left(\rho_{\mathrm{cdm}} S_{\mathrm{cdm}, \gamma}+\rho_{\mathrm{b}} S_{\mathrm{b}, \gamma}\right)}{\rho_{\mathrm{matter}}} \\
\zeta=-\frac{5}{3} \Phi
\end{gathered}
$$

## CIPS AND THE SACHS-WOLFE EFFECT

* Observationally null in the CMB! (surprising but true)
* Vanishing Sachs-Wolfe effect from CIPs

$$
\left(\frac{\Delta T}{T}\right)^{\mathrm{SW}}=-\frac{\zeta}{5}-\frac{2}{5} \frac{\left(\rho_{\mathrm{cdm}} S_{\mathrm{cdm}, \gamma}+\rho_{\mathrm{b}} S_{\mathrm{b}, \gamma}\right)}{\rho_{\mathrm{matter}}}
$$

Vanishes for all $\zeta=-\frac{5}{3} \Phi$ isocurvature modes

## CIPS AND THE SACHS-WOLFE EFFECT

* Observationally null in the CMB! (surprising but true)
* Vanishing Sachs-Wolfe effect from CIPs

$$
\begin{aligned}
& \qquad\left(\frac{\Delta T}{T}\right)^{\mathrm{SW}}=-\frac{\zeta}{5}-\frac{2}{5} \frac{\left(\rho_{\mathrm{cdm}} S_{\mathrm{cdm}, \gamma}+\rho_{\mathrm{b}} S_{\mathrm{b}, \gamma}\right)}{\rho_{\text {matter }}} \\
& \begin{array}{c}
\text { Vanishes for all } \\
\text { isocurvature modes }
\end{array} \\
& \zeta=-\frac{5}{3} \Phi \quad \begin{array}{c}
\text { Also Vanishes for } \\
\text { compensated modes }
\end{array}
\end{aligned}
$$

## TIPS AND ACOUSTIC WAVES

* Run your favorite Boltzmann code (CAMB/CMBFAST) with a CIP
*Fractional change in anisotropies of less than 0.00001 for angular scales $l<10000$
*Why?

$$
\begin{array}{r}
\theta=\nabla \dot{v} \\
\dot{\delta}_{\mathrm{b}}=-\theta_{\mathrm{b}}+3(\dot{\Delta} \Phi)
\end{array}
$$

Definition
$\dot{\theta}_{\mathrm{b}}=-\frac{\dot{a}}{a} \theta_{\mathrm{b}}+c_{\mathrm{s}}^{2} k^{2} \delta_{\mathrm{b}}+\frac{4 \bar{\rho}_{\gamma}}{3 \bar{\rho}_{\mathrm{b}}} a n_{\mathrm{e}} \sigma_{T}\left(\theta_{\gamma}-\theta_{\mathrm{b}}\right)+k^{2} \Delta \Phi \quad$ Gravity, pressure, Thomson scattering

$$
\begin{gathered}
\dot{\delta}_{\mathrm{c}}=-\theta_{\mathrm{c}}+3(\Delta \Phi) \\
\dot{\theta}_{\mathrm{c}}=-\frac{\dot{a}}{a} \theta_{\mathrm{c}}+k^{2} \Delta \Phi \quad \text { Gravity }
\end{gathered}
$$

## TIPS AND ACOUSTIC WAVES

* Run your favorite Boltzmann code (CAMB/CMBFAST) with a CIP
*Fractional change in anisotropies of less than 0.00001 for angular scales $l<10000$
*For TIPs, CMB is only affected on scales where baryonic pressure matters

Solution only affected if $k^{2} c_{\mathrm{s}}^{2} \gg H^{2}$, here $c_{\mathrm{s}}^{2} \sim k_{\mathrm{B}} T / m_{\mathrm{p}}$

$$
l>10^{5}
$$

$\delta_{c}-\delta_{b}$ frozen on large scales

## CIPS AND ACOUSTIC WAVES

* Run your favorite Boltzmann code (CAMB/CMBFAST) with a CIP
* Fractional change in anisotropies of less than 0.00001 for angular scales $l<10000$

There seems to be no affect on the CMB!
No way to observationally disentangle (using CMB) CDM and baryon isocurvature models!

## EXISTING MODELS FOR CIPS

*If heavy CDM produced before curvaton domination

* Direct branching from inflaton
* Gravitational particle production during inflation

$$
\begin{aligned}
& 10^{10} \mathrm{GeV} \lesssim M_{\mathrm{dm}} \lesssim 10^{15} \mathrm{GeV} \\
& \text { WIMPzilla (Kolb et al. 1998) }
\end{aligned}
$$

*Curvatons dominate, decay to baryons (Lyth et al. 2002)

# EXISTING MODELS FOR CIPS 

Gordon and Pritchard, 2009

* Curvaton sources entropy fluctuation in CDM
* After curvaton dominates, adiabatic flucts generated


# EXISTING MODELS FOR CIPS 

Gordon and Pritchard, 2009

* Curvaton sources entropy fluctuation in CDM
* After curvaton dominates, adiabatic flucts generated

$$
S_{\mathrm{b}}=3 \frac{\rho_{\mathrm{c}}}{\rho_{\mathrm{b}}} \zeta
$$

$$
S_{\mathrm{c}}=-3 \zeta
$$

# EXISTING MODELS FOR CIPS 

Gordon and Pritchard, 2009

* Curvaton sources entropy fluctuation in CDM
* After curvaton dominates, adiabatic flucts generated

$$
S_{\mathrm{bc}}=3\left(1+\frac{\rho_{\mathrm{c}}}{\rho_{\mathrm{b}}}\right) \zeta
$$

$$
S_{\mathrm{tot}}=\frac{\rho_{\mathrm{b}}}{\rho_{\mathrm{tot}}} S_{\mathrm{b}}+\frac{\rho_{\mathrm{c}}}{\rho_{\mathrm{tot}}} S_{\mathrm{c}}=0
$$

# EXISTING MODELS FOR CIPS 

Gordon and Pritchard, 2009

* Curvaton sources entropy fluctuation in CDM
* After curvaton dominates, adiabatic flucts generated

$$
\Delta=S_{\mathrm{bc}} \sim 10^{-3}
$$

Fluctuations as high as $8 \%$ are allowed by the data

## EXISTING CONSTRAINTS TO CIS- BEN

* Primordial abundances of $\mathrm{De},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$ : Blue compact galaxies (He) and QSO Absorption systems (De)
* Baryon fraction measurements in galaxy clusters
from Holder et al. 2009
(from Allen 2008)- 42 'relaxed' galaxy clusters



## EXISTING CONSTRAINTS TO CUPS- BEN



Fluctuations as high as $8 \%$ are allowed by the data
Can we empirically show, rather than simply assume, that baryon trace DM in the early universe?

## CIPS AND 21-CM FLUCTUATIONS

Gordon and Pritchard, 2009


Significance of a $21-\mathrm{cm}$ detection of amplitude $10^{-3}$ CIPs

COMPENSATED ISOCURVATURE AND THE CMB:

$$
z \sim 1100 \text { EFFECTS }
$$

COMPENSATED ISOCURVATURE AND THE CMB: z~1100 EFFECTS


## COMPENSATED ISOCURVATURE AND THE CMB: z~1100 EFFECTS

* Damping scale modulated by CIPs


COMPENSATED ISOCURVATURE AND THE CMB:

## z~1100 EFFECTS

* Damping scale modulated by CIPs



## COMPENSATED ISOCURVATURE AND THE CMB:

 RECOVERING THE REALIZATION* Power spec. results were true, averaging over realizations of primordial $\Phi(\hat{n})$ and CIP amplitude $\Delta(\hat{n})$



## COMPENSATED ISOCURVATURE AND THE CMB: RECOVERING THE REALIZATION

* Power spec. results were true, averaging over realizations of primordial $\Phi(\hat{n})$ and CIP amplitude $\Delta(\hat{n})$




## COMPENSATED ISOCURVATURE AND THE CMB: RECOVERING THE REALIZATION

* Power spec. results were true, averaging over realizations of primordial $\Phi(\hat{n})$ and CIP amplitude $\Delta(\hat{n})$



## COMPENSATED ISOCURVATURE AND THE CMB:

 RECOVERING THE REALIZATION* Power spec. results were true, averaging over realizations of primordial $\Phi(\hat{n})$ and CIP amplitude $\Delta(\hat{n})$
* In single realization of CIP spec., a long wavelength CIP w/ amp $\Delta_{L M}$ modulates the power spectrum across the sky


## COMPENSATED ISOCURVATURE AND THE CMB: RECOVERING THE REALIZATION



## COMPENSATED ISOCURVATURE AND THE CMB: RECOVERING THE REALIZATION



## COMPENSATED ISOCURVATURE AND THE CMB:

 RECOVERING THE REALIZATION* Power spec. results were true, averaging over realizations of primordial $\Phi(\hat{n})$ and CIP amplitude $\Delta(\hat{n})$
* In single realization of CIP spec., a long wavelength CIP w/ amp $\Delta_{L M}$ modulates the power spectrum across the sky

*Heuristically:

1. Tile all-sky map with patches
2. Measure power spec in each patch
3. Reconstruct $\Delta(\hat{n})$

## Filtering the map

* Reconstruct CIP map

$$
\begin{aligned}
\bar{\Delta}_{L M} & =\int d \hat{n} Y_{L M}^{*}(\hat{n}) \bar{T}(\hat{n}) S(\hat{n}) \\
\bar{T}(\hat{n}) & =\sum_{l m} Y_{l m}(\hat{n}) \bar{T}_{l m}^{(a)} \\
S(\hat{n}) & =\sum_{l m} Y_{l m}(\hat{n}) C_{l}^{\mathrm{T}, \mathrm{dT}} \bar{T}_{l m}
\end{aligned}
$$

## Estimating CIP power spectrum from data

* Universe gives us CIP amplitudes as random variables: nonlinear modulation of linear theory CMB
Non-Gaussianity at 4-pt function (trispectrum) level $\left.\left\langle T_{l_{1}} T_{l_{2}} T_{\overrightarrow{l_{\mathrm{s}}}} T_{\vec{l}_{\vec{A}}}\right\rangle_{\text {connected }} \propto C_{L}^{\Delta \Delta} \quad \mathrm{X} \quad \mathcal{O}\left(\frac{d C_{1}}{d n_{b}}\right)\right|_{\Omega_{\mathrm{m}}} ^{2} \times \quad$ Spherical geometry
* CIP power spectrum estimate from Monte Carlos and filtered CMB map

$$
\hat{C}_{L}^{\bar{\Delta} \bar{\Delta}} \propto \sum_{M} \frac{1}{(2 L+1)}\left(\bar{\Delta}_{L M}-\bar{\Delta}_{L M}^{\text {null }}\right)^{*} \times\left(\bar{\Delta}_{L M}-\bar{\Delta}_{L M}^{\text {null }}\right)
$$

Reconstructed power spectrum from WMAP 9-year data


Reconstructed power spectrum from WMAP 9-year data


No evidence for CIPs! Cosmic baryon fraction is homogeneous arXiv: 1306.4319 (DG, DH, GH, OD, and MK)- submitted to Phys. Rev. D

## Upper limit to CIP spectrum at a variety of scales



## Upper limit to CIP spectrum at a variety of scales



Cosmic baryon fraction is homogeneous at $10-20 \%$ level at $5-100^{\circ}$ scales

## Limit to amplitude of scale-invariant spectrum



$$
A \lesssim 1.1 \times 10^{-2}
$$

## Limit to amplitude of scale-invariant spectrum



* Combine scales to probe models
* Scale-invariant CIP spectrum

$$
C_{L}=\frac{A}{L(L+1)}
$$

* Monte Carlo null hypothesis
* Observations consistent with null hypothesis

$$
A \lesssim 1.1 \times 10^{-2}
$$

## Limit to amplitude of scale-invariant spectrum



* Proof of technique
* First purely primordial test
* Great improvement with coming experiments

$$
A \lesssim 1.1 \times 10^{-2}
$$

## Possible sources of bias

## Scale invariant signal



All secondary biases can be neglected for WMAP-9 analysis

## COMPENSATED ISOCURVATURE AND THE CMB: PROSPECTS

## COMPENSATED ISOCURVATURE AND THE CMB: PROSPECTS



## COMPENSATED ISOCURVATURE AND THE CMB: PROSPECTS



## COMPENSATED ISOCURVATURE AND THE CMB:

Parameter space accessible with CMB



Two orders of magnitude improvement: conservatively

## CONCLUSIONS

* Primordial, baryons trace DM at ~10-20\% level
* A new test of curvaton models is at hand
* Degeneracy between baryon and CDM isocurvature can be broken with CMB data
* In progress: Correlated case, effect on galaxies
* Future work: (use SPT/Planck data)


## SACHS WOLFE-EFFECT \& POWER SPECTRA

## SACHS WOLFE-EFFECT \& POWER SPECTRA



## CIPS AND GALAXIES (IN REALITY)

## WORK IN PROGREES

* CIPs would change baryon fraction of halos: affect properties of galaxies in different patches of sky (detectable in SDSS? vs. astrophysical confusion)
* Baryonic part of halo collapses late
* CIPs would change transfer function for LSS power spectrum, induce couplings between scales

$$
P_{\text {gal }}=b^{2} T_{\text {matter }}^{2}(k) P_{\Phi}(k)
$$

Might be detectably modulated by CIPs

## FUTURE WORK: CORRELATED CIPS AND THE CURVATON MODEL

* All perturbations $\left(\zeta, S_{\mathrm{c}}, S_{\mathrm{b}}\right)$ seeded by curvaton
* CIPs are correlated with adiabatic flucts

$$
\Delta \propto S_{\mathrm{bc}} \simeq 16 \zeta
$$

* Non-vanishing 3 pt-functions in specific curvaton implementation

$$
\begin{array}{r}
\delta\{\mathrm{T}, \mathrm{E}, \mathrm{~B}\} \propto \zeta \Delta \propto \zeta^{2} \\
\{\mathrm{~T}, \mathrm{E}, \mathrm{~B}\}_{0} \propto \zeta \\
\langle X Y Z\rangle \propto \zeta^{4}
\end{array}
$$

## Errors are strongly signal-dependent



## ISOCURVATURE AND SACHS-WOLFE EFFECT

* From gravitational redshifting

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{CMB}}=\Delta \Phi^{\mathrm{SLS}}+\frac{\delta_{\gamma}^{\mathrm{SLS}}}{4}
$$

* For adiabatic initial condition

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{CMB}}=\frac{\Delta \Phi^{\mathrm{SLS}}}{3}
$$

* For density isocurvature

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{CMB}}=2 \Delta \Phi^{\mathrm{SLS}}
$$

## OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

* WMAP 7-year constraints (Komatsu/Larson et al 2010)
$P_{\mathrm{S}_{\mathrm{c}}}^{\text {axion }} / P_{\zeta} \lesssim 0.13 \quad P_{\mathrm{S}_{\mathrm{c}}}^{\text {curvaton }} / P_{\zeta} \lesssim 0.01$


## OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

* WMAP 7-year constraints (Komatsu/Larson et al 2010)
$P_{\mathrm{S}_{\mathrm{c}}}^{\text {axion }} / P_{\zeta} \lesssim 0.13 \quad P_{\mathrm{S}_{\mathrm{c}}}^{\text {curvaton }} / P_{\zeta} \lesssim 0.01$
* Constraints relax if assumptions (scale-invariance, single isocurvature mode) relaxed: Bean et al. 2009



## OBSERVATIONAL CONSTRAINTS TO ISOCURVATURE

* WMAP 7-year constraints (Komatsu/Larson et al 2010)
$P_{\mathrm{S}_{\mathrm{c}}}^{\text {axion }} / P_{\zeta} \lesssim 0.13 \quad P_{\mathrm{S}_{\mathrm{c}}}^{\text {curvaton }} / P_{\zeta} \lesssim 0.01$



## EXISTING CONSTRAINTS TO CIPS- BBN

* Primordial abundances of $\mathrm{De},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$ : Blue compact galaxies (He) and QSO Absorption systems (De)
* Baryon fraction measurements in galaxy clusters
from Holder et al. 2009
(from Allen 2008)- 42 'relaxed' galaxy clusters



## EXISTING CONSTRAINTS TO CIPS- BBN



Fluctuations as high as $\mathbf{8 \%}$ are allowed by the data
Can we empirically show, rather than simply assume, that baryon trace DM in the early universe?

## COMPENSATED ISOCURVATURE AND THE CMB:

$$
z \sim 1100 \text { EFFECTS }
$$

* $90 \%$ of CMB photons last scatter at decoupling (z~1100)
* CIPs are primordial: induced anisotropies at z~1100 >> reionization terms
* Prior work neglected effects at $\mathrm{z} \sim 1100$

Vastly exceeds reionization signal!!!
Thompson scattering rate $\propto \dot{\tau}(1+\Delta) \nabla \cdot \delta_{i} \quad$ Second order!

## COMPENSATED ISOCURVATURE AND THE CMB: PATCHY REIONIZATION

* Patchy Screening: (Smith/Dvorkin 2008/2009)

Angular dependence of $\tau(\hat{n})$ modulates $e^{-\tau}\{\delta T(\hat{n}), E(\hat{n}), B(\hat{n})\}$

* ゆatchy scattering

Polarization : $\Delta(\hat{n})$ affects $T_{2 i}$ generation and $n_{e}$
$Q, U \propto \int n_{e}(\eta)[1+\Delta(\hat{n})] T_{2 i}(\eta, \hat{n}) d \eta$

## COMPENSATED ISOCURVATURE AND THE CMB: z~1100 EFFECTS

* Efficiency of polarization generation is modulated

Isotropic radiation


No Polarization

## COMPENSATED ISOCURVATURE AND THE CMB: z~1100 EFFECTS

* Polarization : $\Delta(\hat{n})$ affects $T_{2 i}$ generation and $n_{e}$
$Q, U \propto \int n_{e}(\eta)[1+\Delta(\hat{n})] T_{2 i}(\eta, \hat{n}) d \eta$

COMPENSATED ISOCURVATURE AND THE CMB:

## RECOMBINATION B-MODES



## COMPENSATED ISOCURVATURE AND THE CMB: CIPS VS LENSING

* ... but at power spectrum level for $1>100$, all are swamped by lensing!



## COMPENSATED ISOCURVATURE AND THE CMB: CIPS VS LENSING

* ... but at power spectrum level for $1>100$, all are swamped by lensing!
* ...fortunately, there is life beyond the power spectrum!



## Possible sources of bias

* Chance correlations (noise bias)
* Weak lensing of CMB
$\Rightarrow$ Trispectrum (statistical)
$\Rightarrow$ Off-diagonal correlations (in a realization of lensing potential)
* Unresolved point sources
- Bispectrum detected in Planck 2013 temp data
* Secondary CIP/lensing contractions

