"The 21 cm Signature of the First Stars"

Xuelei Chen and Jordi Miralda-Escudé: astro-ph/0605439

Daniel Grin Journal Club May 26th

Today's Show is Brought to You By the Letter

Outline

- Population III Stars
- Physics of the 21 cm Line
- Lyman α Spheres around the First Stars
- Pesky Backgrounds
- Feasibility

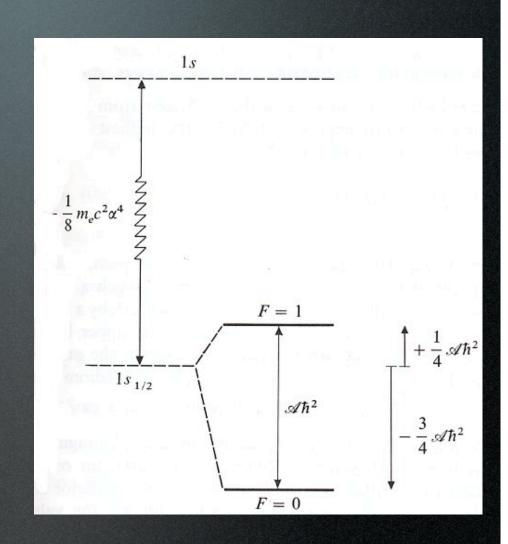
Pop III Stars

- Form from gas of primordial composition (X=0.76, Y=0.24)--> $M_J \approx 10^3 M_{\odot}$. Pulsational Instability/Line Driven Wind not problems.
- Z=0-> Hydrogen burning starts on pp chain-- $T_c \approx 10^{8.1} K$ Triple α kicks in eventually. Pre-enrichment to $Z \approx 10^{-9}$ -- CNO burning
- Radiation Pressure Dominated--Due to High Mass and Temperature.

$$L \approx L_{edd} = 1.25 \times 10^{38} erg s^{-1} \frac{M}{M_{\odot}}$$

• Reasonable to use n=3 polytrope (Bromm, Kudritzki, &Loeb 2001)

$$T = 1.1 \times 10^5 \left(\frac{M}{100M_{\odot}}\right)^{0.025} K \qquad L = 10^{4.5} \frac{M}{M_{\odot}} L_{\odot}$$


• Roughly Blackbody Spectrum

Physics of the 21 cm line:

Hyperfine Splitting in Neutral Hydrogen.

- Fine Structure: SO and SR lower energy of HI ground state.
- Hyperfine splitting: F=1 state less affected by SO interaction, higher energy than F=0 state.
- Magnetic dipole transition (21 cm) $\nu = 1420.405751768 \pm 1Mhz$
- Radiative Transfer:

$$T_B = \frac{(T_s - T_{CMB})}{1+z} \tau$$

We're going to pump you (the F=1 hyperfine state of Hydrogen) up!

- Absorption couples (Field-Wouthuysen) T_s and T_α
- Collisions Couple T_s and T_k
- Resonant Scattering (Field 1959): $T_{\alpha} = T_k$
- By Detailed Balance:

$$T_s = \frac{T_\gamma + (y_\alpha + y_c)T_k}{1 + y_\alpha + y_c}$$

$$y_{\alpha} = \frac{P_{10}T_*}{A_{10}T_k} \qquad y_c = \frac{C_{10}T_*}{A_{10}T_k}$$

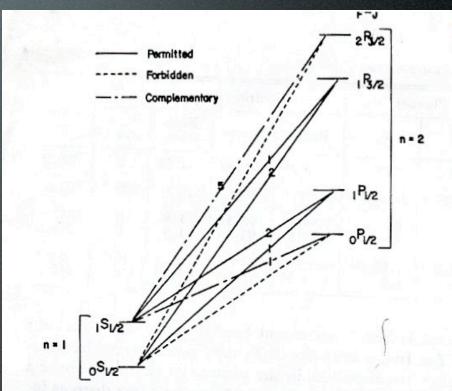
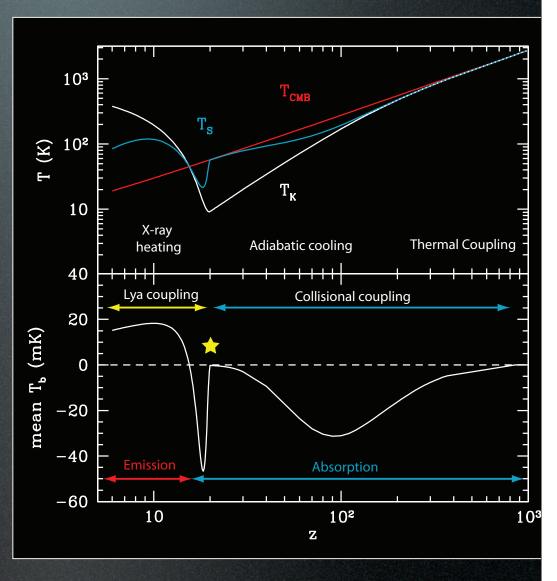


Fig. 3—The 1S and 2P levels of hydrogen, showing the particular transitions in the $L\alpha$ line which excite the triplet (dark lines). The numbers in the center are relative strengths.

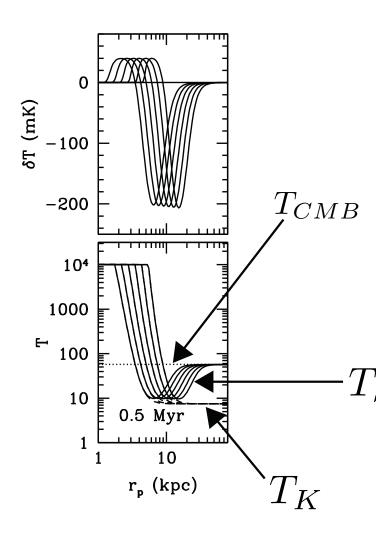

$$P_{10} = \frac{4}{27} H \tau_{GP} \frac{S_c J_c + S_i J_i}{J_0} \quad J_0 = \frac{c n_H}{4\pi \nu_\alpha}$$

Global Evolution of T_s

(Attractive plot courtesy of J. Pritchard)

- Residual e^- lock $T_k o T_{CMB}$ until $z \approx 200$
- When Pop III stars, QSOs turn on, T_k increases
- Until collisions freeze-out, $T_s = T_k$
- After freeze-out:

$$T_s \rightarrow T_{CMB}$$


The Lyman α Sphere

- Region in which $T_s \neq \langle T_s \rangle$, larger than Strömgren sphere.
- First Source of Ly photons: Redshifted stellar photons between Ly_{α} and Ly_{β} . `Continuum" $\to J_c$.
- Second Source of Ly photons: Soft ``X-Rays" ionize H, recombination -> Ly_{α} photons. ``Injected" J_i .
- Third Source of Ly photons: Redshifted photons between Ly_{β} and Ly continuum->Excited Ly series--> cascades that release more Ly_{α} photons $\to J_i$. These lead to a few % correction to $\to J_i$ (Pritchard et al. 2005). Ignored by these authors.

The Lyman α Sphere

- #2 Dominates #1 around Pop III stars!
- Ionization Equilibrium Equations Solved around Pop III Star to obtain $x_{HI}, x_{HeI}, x_{HeII}$, Recombination ignored here.
- Fraction Γ of photo-electron energy converted to heat (rate η) from Shull/van Steenberg (1981) Monte Carlo-> integrate over fluxes/cross sections to get heating rate $J_i^X = \frac{c\eta_\alpha\Gamma}{4\pi hH\nu_\alpha^2}$
- J_i^{Ly} from radiative transfer/resonant scattering ignored.
- Atomic Recoils: Gas is Heated. X-ray heating dominates over Ly α .

21 cm signal from the Lyman lpha Sphere

- Pop III Stellar spectrum heats surrounding IGM, setting T_k and y_c
- Stellar Flux processed $\rightarrow J_c \text{ and } J_i, \text{ setting } y_{\alpha}$
- Innermost Regions (still outside star): $T_k \rightarrow 10^4 K$ due to atomic cooling.
- Inner Regions: $T_s \to T_k$
- $TT_S ullet$ Outer Regions: $T_s o T_{CMB}$
 - Backgrounds neglected!
 - Collisional coupling keeps $T_s < T_{CMB}$

21 cm signal in the Lyman α Sphere

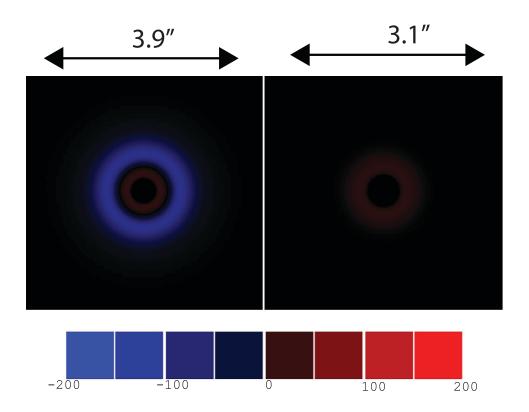


Fig. 12.— A cross section map for a star of $200 M_{\odot}$ and age 1.5 Myr at redshift 20(left) and 15(right). The box size is 40 kpc across (physical distance), and unit of temperature scale is mk.

Effect of Stellar Mass/Redshift

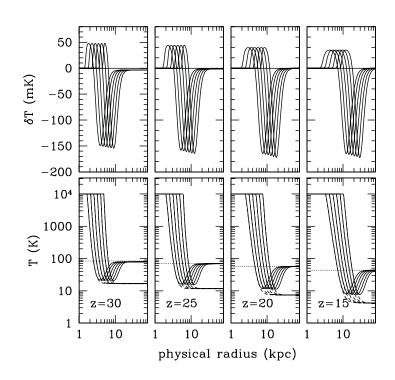
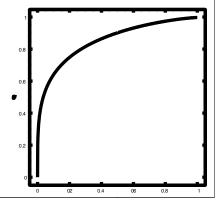



Fig. 2.— Brightness and temperature profiles of Ly α spheres, at a time t=1.5 Myr and the indicated redshifts. Bottom panels: T_k (dash lines), T_{CMB} (dotted line), and T_S (solid lines). The six curves are for a star mass M=25, 50, 100, 200, 400, and $800 M_{\odot}$. Top panel: 21cm brightness temperature fluctuation on the CMB at time t=1.5 Myr.

- More Massive, Luminous Pop III stars-- T_K drops less quickly
- Denser gas at high z, smaller HI sphere. Neutral fraction higher at given radius, heating more efficient (S-vSberg MC).

Time Evolution

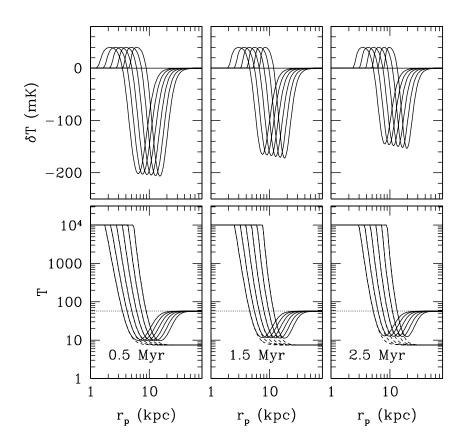


Fig. 3.— Brightness profile of Ly α spheres at z = 20, for the three indicated ages after the star birth.

- Ionization/Heating fronts move outward--Absorption Region moves outward
- Heating becomes more important . T_k falls less before $y_{\alpha} \ll 1$. Shallower Absorption Feature.

Star Formation and the Abundance of First Stars

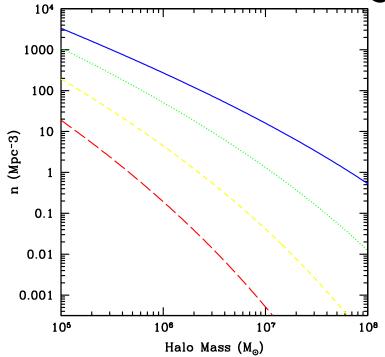


Fig. 4.— Number density of star-harboring halos of mass m per comoving Mpc⁻³ per $\log m$. The four curves are at z=15 (solid, blue curve), z=20 (dotted green curve), z=25 (short-dash yellow curve), and z=30 (long-dash red curve).

$$M_{min}(z) = 1.17 \times 10^6 \left(\frac{\Omega_m h^2}{0.147}\right)^{-1/2} \left[\frac{(1+z)}{21}\right]^{-3/2} \frac{T_{vir}}{2000K}$$

- Assuming H_2 cooling, can calculate minimum mass of star-forming halo.
- Use ST/PS mass function to calculate density of these Halos, assuming lifetime t_{st} .
- Mergers/feedback become important at low z; this breaks down.

How many neighbors?

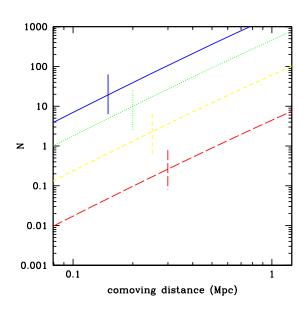


Fig. 8.— Expected number of star-forming halos as a function of distance. The four curves are z=15 (solid, blue curve), z=20 (dotted green curve), z=25 (short-dash yellow curve), and z=30 (long-dash red curve). A physical distance of 10 kpc (the approximate size of the Ly α spheres) is marked at each redshift.

- Using ST bias formula, ξ_{lin} , n(z), can get N(R).
- At low z, several star-forming halos within Ly_{α} sphere of single star.

The Lyman α Background: Show's over at $z\approx 25$?

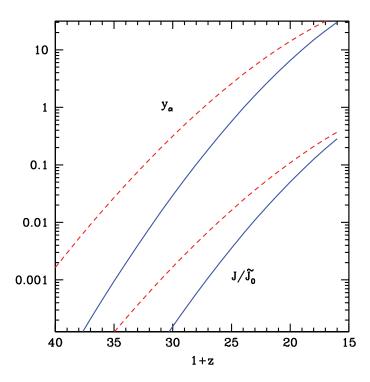


Fig. 9.— Ratio J/\tilde{J}_0 (lower curves) and y_{α} (upper curves) as a function of redshift. Solid curves are for the Press-Schechter mass function, dashed curves are for the Sheth-Tormen mass function.

- Only continuum photons can contribute.
- Use ST/PS Mass function to get J, y_{α}
- Global absorption after $z\approx 25$,local feature unobservable -> FIRST Stars!

The X-Ray Background: Show's Over at?

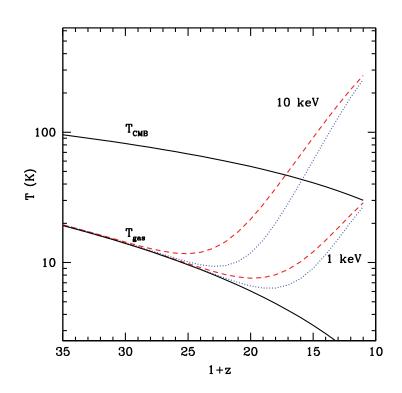


Fig. 10.— Temperature evolution of the IGM. Solid curves show T_{CMB} and the adiabatically evolved gas temperature. Short and long-dash curves show the IGM heated by X-rays, with the PS (short dash) and ST (long dash) model calculations. Two sets of curves are plotted, for $\epsilon = 1 \,\mathrm{keV}$ and $10 \,\mathrm{keV}$ respectively.

- Hard X-rays have long MFP, heat IGM globally.
- Estimate ϵ_x per stellar baryon, assume η_{eff} (heating efficiency of X-rays), f_* .
- Assume MF from before to count baryons in halos with stars.
- Other heat sources (supernovae, QSO) neglected.

More on the X-Ray Background

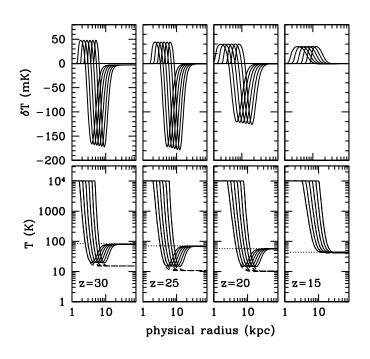


Fig. 11.— Brightness and temperature profiles of $Ly\alpha$ spheres, as in Fig. 2 except with X-ray heating of 10 keV per baryon.

- As X-rays heat IGM at low z, IGM floor is hotter and $|\Delta T_b|$ shrinks
- At low enough z, star appears only in emission.

Is this nuts?

• Baselines:

$$d = 10kpc \rightarrow \theta \approx 5.3$$
, $\Delta \nu = 9.2kHz$ at $z = 30$
 $L = 910km \left(\frac{1+z}{21}\right) \left(\frac{\theta}{1''}\right)^{-1} km$

•
$$SNR \approx 3 f_{cov} \left(\frac{1+z}{21}\right)^{-2.5} \left(\frac{\Delta \nu t}{10 kHzyr}\right)^{1/2} \left(\frac{\delta T}{10 mK}\right)$$

For SNR of 5, with complete coverage and 1 year of continuous observing, and looking for a $400 M_{\odot}$ star, optimal bandwidth is $\Delta \nu \approx 30 kHz$ and optimal baseline is $\Delta \theta \approx 45 km$

•Need full coverage with this baseline for this SNR--1600 km^2 of collecting area fully covered! (Next Generation)