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Outline

• Dark matter candidates

• Clumping and dark matter annihilation

• Dark matter annihilation and IGM heating

• 21 cm physics and D.M. annihilation
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Dark matter 
• WIMPs (Weakly interacting massive particles):
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• Axions:

• MACHOS

• Sterile Neutrinos: x-ray background, 

• Light dark matter: INTEGRAL 511 keV excess, WMAP haze

CAST, PVLAS, ADMX, stellar ev. constraints, telescope 
searches, 
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• Experiments: COUPP, CDMS, ZEPLIN, DAMA, 
XENON, LHC, Fermi, EGRET, PAMELA, 
WMAP haze

• Gravitinos: supersymmetric partner of graviton

WIMPs
• Cold WIMPs can be all the dark matter (WIMP Miracle)
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• SuSy solves hierarchy/gauge unification problem

• SuSy doubles SM particle number: LSP could be 
the dark matter

• Neutralinos:
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Light dark matter
• Experimental motivation: unexplained excess of 
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• Coupling could be through a new U(1) boson that 
mediates SM interactions

• INTEGRAL +relic density constraints demand MeV 
scale dark matter with s-wave suppressed interactions

• Smaller-scale structure is suppressed (free-streaming): 
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• This work includes enhancement in annihilation rate due 
to DM inhomogeneities

• Dark matter annihilates:

• Rest-mass energy of DM thermalized.                    
Homogeneous specific heating rate:

Dark matter annihilation and energy 
deposition into IGM

Efficiency of IGM absorption
Thermally averaged DM annihilation cross section

Mass of DM particle
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Halo clumping and IGM energy 
deposition by DM

• IGM energy deposition depends on halo population:

• IGM energy deposition depends on halo density profile:
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Halo clumping and IGM energy 
deposition by DM
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The effect of halo substructure

• VL II simulations show a hierarchy of substructure in halos with 
mass function

• Substructure halos are more concentrated by a factor of ~ 3
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• Rate due to substructure annihilation given by

Halo term
Sub-halo term

Sub-sub halo term
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Energy injection spectra

• WIMPs self annihilate

• Decay products interact strongly, weakly, hadronize:

• Continuum radiation is produced: 
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• LDM (3 and 20 MeV) annihilates into monochromatic 
10/18
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Energy deposition into IGM by photons

• Absorption channels:

• Photo-ionization

• Compton scattering 

• Pair production on CMB photons

• Scattering on CMB photons

• Pair production on atoms/electrons/nuclei
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• Simple criterion for absorption (not a real radiative transfer treatment):

Absorption region
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Energy deposition into IGM by e+e- pairs

• Absorption channels:

• Collisional ionization

• Compton scattering off CMB:

• Then absorbed as on previous slide

• Annihilation with thermal e

• Synchrotron radiation
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Where does the energy go?

• Model 1: 50 GeV neutralino: 

• Model 2: 150 GeV, same branching

• Model 3: 150 GeV,

• Model 4: 600 GeV,
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BW+W− = 0.58, BZZ = 0.42

• Results of Chen, Kamionkowski (2004) used to determine how much 
energy goes to heat, ionization, evolution of TK
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21 cm line physics: The basics

• Fine structure: SO and SR lower energy 
of HI ground state

• Hyperfine splitting: F=1 state less 
affected by SO interaction, higher 
energy than F=0 state

• Magnetic dipole transition, 21 cm line:
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The 21 cm spin temperature

• Photon absorption couples                      : 
Wouthuysen-Field effect          

• Collisions couple                      

• Resonant scattering couples

• Spin temperature defined by

• Quasi-static approx yields

Spontaneous hyperfine rate

Wouthuysen effect rate

Collisional excitation rate of 
F=1 state
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Evolution of the spin temperature

• Residual Compton scat.        
locks                        for z>200

•                                    until z<70, 
when hyperfine radiative 
transitions take over

• First sources turn on, heating 
neutral hydrogen

Collisional coupling

  X-ray
heating

Lya coupling

Adiabatic cooling Thermal Coupling

Emission Absorption

• Observable is
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• Particle physics held fixed

• Density profile varied

• Sub(-sub)structure mass fraction varied

‘Observable’ 21 cm signal 
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Used most optimistic parameters consistent with 
measurements of diffuse gamma-ray background 
(EGRET, COMPTEL) and diffuse X-ray background 
(INTEGRAL)

Parameters chosen to avoid early reionization
20 MeV
3 MeV

• LOFAR sensitivity is ~
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Conclusions

• Proof of concept

• Standard neutralino models are marginally detectable

• More novel DM candidates stand a better chance

• SUSY parameter space should be more robustly explored

• Realistic (not optimistic) density profiles should be used, particularly 
for evaluation of clumping factors: Millenium/VL/VLII/Aquarius 
simulations?

• Sub-structure mass hierarchy may not be self-similar (see Aquarius) 

• It would be useful to see realistic comparisons with LOFAR sensitivity
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