Higgs What's it all about?

August 25, 2015

Young-Kee Kim
Department of Physics and Enrico Fermi Institute
The University of Chicago

Time magazine called the Higgs particle "Particle of the Year".

http://poy.time.com/2012/12/19/the-higgs-boson-particle-of-the-year/

Peter Higgs

BEGHHK Particle

Robert Brout
Universite Libre de Bruxelles
Belgium

Carl R. Hagen
University of Rochester
U.S.A.

Gerald S. Guralnik Brown University U.S.A.

T.W.B. Kibble Imperial College U.K.

The Higgs particle has been given another misnomer.

Accelerators are Ultimate Microscopes.

What is the world made of?

up, down quarks, electrons

Gravitational force

Electromagnetic force

Weak and Strong forces

What holds it together?

1930

Ernest Lawrence (1901-1958)

Today's accelerators for particle physics

Today, ~30,000 accelerators are in operation around world

Discovery science

Manufacturing and material science

National security

Energy and the environment

Medical diagnostics / treatments

Accelerators are like Time Machines.

They make particles last seen in the earliest moments of the universe.

Accelerators are like Time Machines.

They make particles last seen in the earliest moments of the universe.

Discovering elementary particles

Accomplishment of the 19th Century

Periodic Table of Elements

Accomplishment of the 20th Century

Table of Elementary Particles

Standard Model

The triumphs.....

The present theory is a remarkable intellectual construction

 Particle experimental results beautifully fit in this framework

What is the origin of masss for elementary particles?

Discovering elementary particles

Origin of Mass:

There might be something (new particle?!) in the universe that gives mass to particles

Nothing in the universe Something in the universe **Higgs Particles:** mass **Electron** Z,W Boson Top Top Quark Mass ∞ coupling strength to Higgs

Top quark and W boson carry information about mass of Higgs boson

Top Quark Mass (Tevatron)

about 0.5 % Accuracy

W Boson Mass (Tevatron)

0.02 % Accuracy

Top quark and W boson carry information about mass of Higgs boson

114 x proton mass < Higgs mass < 150 x proton mass (top quark mass = 175 x proton mass)

Discovered: Higgs mass = 125 x proton mass

ATLAS experiment at LHC>

Are we done now?

- Origin of mass?
 - Discovery of Higgs is the only beginning

 Why so many kinds of particles? Why three families?

age of the universe ← energy

- Do all forces become one?
 - Super symmetry
 - Proton decay
 - **–**

Where did antimatter go?

What are neutrinos telling us?

Origin of neutrino mass?

Neutrinos are under our skin

~100 trillion neutrinos zip through each person every second.

One billion neutrinos for each proton or electron in the universe. If we wish to understand the universe, must understand neutrinos

What is dark matter?

 It is everywhere, it is five times more abundant than matter.

 Not only is the universe expanding, it is accelerating.

What is dark energy?
 Not a <u>clue!</u>

Tools: three frontiers

Top quark discovery

Higgs discovery + ??
(Higgs as a tool to discover new physics)

Future Energy Frontier Facility Candidates

Global projects

e⁺e⁻ linear collider (ILC) Higgs factory → ~ 1 TeV

e⁺e⁻ circular collider (Higgs factory) pp circular collider (50 ~ 100 TeV)

80 km circular collider

→ ~100 TeV pp collider

~10 km µ⁺µ⁻ collider Higgs factory → ~ 3 TeV

